Cite this article as:
Tatosov A. V., Shlyapkin A. S. The Motion of Propping Agent in an Opening Crack in Hydraulic Fracturing Plast. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2018, vol. 18, iss. 2, pp. 217-226. DOI: https://doi.org/10.18500/1816-9791-2018-18-2-217-226
The Motion of Propping Agent in an Opening Crack in Hydraulic Fracturing Plast
1. Perkins T. K., Kern L. R. Widths of Hydraulic Fractures. Journal of Petroleum Technology, 1961, vol. 13, iss. 09, paper SPE 89, pp. 937–949. DOI: https://doi.org/10.2118/89-PA
2. Nordgren R. P. Propagation of a Vertical Hydraulic Fracture. Society of Petroleum Engineers, 1972, vol. 12, iss. 04, paper 7834, pp. 306–314. DOI: https://doi.org/10.2118/3009PA
3. Zheltov Yu. P., Khristianovich S. A. O gidravlicheskom razryve neftenosnogo plasta [Onhydraulic fracturing of oil reservoirs]. Izv. AN SSSR, Otd-nie tekhn. nauk [Proc. USSRAcad. Sci. Sect. Tech. Sci.], 1955, no. 5, pp. 3–41 (in Russian).
4. Esipov D. V., Kuranakov D. S., Lapin V. N., Chernyi S. G. Mathematical models of hydraulic fracturing. Computational technologies, 2014, vol. 19, no. 2, pp. 33–61 (inRussian).
5. Mobbs A. T., Hammond P. S. Computer Simulations of Propp ant Transport in a Hydraulic Fracture. SPE Production & Facilities, 2001, vol. 16, no. 2, pp. 112–121. DOI: https://doi.org/10.2118/69212-PA
6. Dontsov E. V., Peirce A. P. Slurry flow, gravitational settling and a proppant transportmodel for hydraulic fractures. Journal of Fluid Mechanics, 2014, vol. 760, pp. 567–590. DOI: https://doi.org/10.1017/jfm.2014.606
7. Novatsky B. Teorija uprugosti [Theory of Elasticity]. Moscow, Mir, 1975. 256 p. (in Russian).
8. Ivashnev O. E., Smirnov N. N. Formirovanie treshhiny gidrorazryva v poristoj srede [Formation of a hydraulic fracture in a porous medium]. Vestnik Moskovskogo Universiteta. Ser. 1, Matematika. Mekhanika, 2003, no. 6, pp. 28–36 (in Russian).
9. Smirnov N. N., Tagirova V. P. Analiz stepennyh avtomodel’nyh reshenij zadachi o formirovanii treshhiny gidrorazryva [Analysis of power-law self-similar solutions of the problem of fracture formation]. Vestnik Moskovskogo Universiteta. Ser. 1, Matematika.Mekhanika, 2007, no. 1, pp. 48–54 (in Russian).
10. Tatosov A. V. Model of crack filling in hydraulic fracturing . Computational technologies,2005, vol. 10, no. 6, pp. 91–101 (in Russian).
11. Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P. Rezhimy s obostreniem v zadachah dlja kvazilinejnyh parabolicheskih uravnenij [Regimes with peaking in problems for quasilinear parabolic equations]. Moscow, Nauka, 1987. 480 p. (in Russian).