Cite this article as:

Davidovich M. V., Shilovskii P. A., Andreichenko D. K. Using parallel computing technologies for modeling of metallic photonic crystals . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 2, pp. 86-90. DOI: https://doi.org/10.18500/1816-9791-2013-13-2-1-86-90


Language: 
Russian
Heading: 

Using parallel computing technologies for modeling of metallic photonic crystals

Abstract: 

This article presents opportunities of using parallel computing technologies Message Passing Interface and Open Computing Language for modeling of metallic photonic crystals with the method of Green's functions and integral equations. The efficiency of these technologies is analized and the results are presented. 

References

1. Pendry J. B., Holden A. J., Stewart W. J. Youngs I.

Extremely low frequency plasmons in metallic meso

structures. Phys. Rev. Lett., 1996, vol. 76, pp. 4773–4776.

2. Sievenpiper D. F., Sickmiller M. E., Yablonovitch E.

3D wire mesh photonic crystals. Phys. Rev. Lett., 1996,

vol. 76, pp. 2480–2483.

3. Simovski C. R., Belov P. A. Low-frequency spatial

dispersion in wire media. Phys. Rev. E., 2004, vol. 70,

pp. 046616(1–8).

4. Zhao Y., Belov P. A., Hao Y. Modelling of wave

propagation in wire media using spatially dispersive

finite-difference time-domain method : numerical aspects.

IEEE Trans., 2007, vol. AP-55, no. 6, pp. 1506–1513.

5. Davidovich M. V. Photonic crystals : Green’s functions,

integro-differential equations and simulation results.

Radiophysics and Quantum Electronics, 2006, vol. 49,

Issue 2, pp. 150–163.

6. Davidovich M. V., Stephuk J. V., Shilovskii P. A.

Electrophysical properties of metallic wire photonic

crystals. Technical Physics, 2012, vol. 57, iss. 3, pp. 320–

327.

7. Davidovich M. V., Stephuk J. V., Shilovsky P. A.,

Yavchunovskaya S. V. Material’nye parametry metallicheskikh

provolochnykh fotonnykh kristallov [Material

parameters of metallic wire photonic crystals]. Izluchenie

i rasseianie elektromagnitnykh voln IREMV-2011 : tr.

konf. [Radiation and Scattering of Electromagnetic Waves

RSEMW-2011: Proc. conf.]. Taganrog, 2011, pp. 246–250.

8. Shilovsky P., Atmakin D., Khvatov I. Using message

passing interface technology for solving mathematical

physics problems on parallel calculating systems.

Presenting Academic Achievements to the World,

Saratov, 2010, pp. 125–129.

9. Message Passing Interface Forum. MPI : A Message

Passing Interface Standard. Version 2.2. Available at:

http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.

pdf (accessed 14 May 2012).

10. The OpenCl specification. Version 1.2. Available at:

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

(accessed 14 May 2012).

11. Gropp W., Lusk E., Doss N., Skjellum A. A highperformance,

portable implementation of the MPI message

passing interface standard. Parallel Computing, 1996,

September, vol. 22, no. 6, pp. 789–828.

Short text (in English): 
Full text: