Cite this article as:
Davidovich M. V., Shilovskii P. A., Andreichenko D. K. Using parallel computing technologies for modeling of metallic photonic crystals . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 2, pp. 86-90. DOI: https://doi.org/10.18500/1816-9791-2013-13-2-1-86-90
Using parallel computing technologies for modeling of metallic photonic crystals
This article presents opportunities of using parallel computing technologies Message Passing Interface and Open Computing Language for modeling of metallic photonic crystals with the method of Green's functions and integral equations. The efficiency of these technologies is analized and the results are presented.
1. Pendry J. B., Holden A. J., Stewart W. J. Youngs I.
Extremely low frequency plasmons in metallic meso
structures. Phys. Rev. Lett., 1996, vol. 76, pp. 4773–4776.
2. Sievenpiper D. F., Sickmiller M. E., Yablonovitch E.
3D wire mesh photonic crystals. Phys. Rev. Lett., 1996,
vol. 76, pp. 2480–2483.
3. Simovski C. R., Belov P. A. Low-frequency spatial
dispersion in wire media. Phys. Rev. E., 2004, vol. 70,
pp. 046616(1–8).
4. Zhao Y., Belov P. A., Hao Y. Modelling of wave
propagation in wire media using spatially dispersive
finite-difference time-domain method : numerical aspects.
IEEE Trans., 2007, vol. AP-55, no. 6, pp. 1506–1513.
5. Davidovich M. V. Photonic crystals : Green’s functions,
integro-differential equations and simulation results.
Radiophysics and Quantum Electronics, 2006, vol. 49,
Issue 2, pp. 150–163.
6. Davidovich M. V., Stephuk J. V., Shilovskii P. A.
Electrophysical properties of metallic wire photonic
crystals. Technical Physics, 2012, vol. 57, iss. 3, pp. 320–
327.
7. Davidovich M. V., Stephuk J. V., Shilovsky P. A.,
Yavchunovskaya S. V. Material’nye parametry metallicheskikh
provolochnykh fotonnykh kristallov [Material
parameters of metallic wire photonic crystals]. Izluchenie
i rasseianie elektromagnitnykh voln IREMV-2011 : tr.
konf. [Radiation and Scattering of Electromagnetic Waves
RSEMW-2011: Proc. conf.]. Taganrog, 2011, pp. 246–250.
8. Shilovsky P., Atmakin D., Khvatov I. Using message
passing interface technology for solving mathematical
physics problems on parallel calculating systems.
Presenting Academic Achievements to the World,
Saratov, 2010, pp. 125–129.
9. Message Passing Interface Forum. MPI : A Message
Passing Interface Standard. Version 2.2. Available at:
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.
pdf (accessed 14 May 2012).
10. The OpenCl specification. Version 1.2. Available at:
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
(accessed 14 May 2012).
11. Gropp W., Lusk E., Doss N., Skjellum A. A highperformance,
portable implementation of the MPI message
passing interface standard. Parallel Computing, 1996,
September, vol. 22, no. 6, pp. 789–828.