The article deals with the multidimensional discrete analogue of the Minkowski problem in the production of A. D. Aleksandrov on the existence of a convex polyhedron with given curvatures at the vertices. We find the conditions for the solvability of this problem in a general setting, when the curvature measure at the polyhedron vertices is defined by an arbitrary continuous function defined on a field F : S n−1 → (0, +∞).