functional equation

Analytic Embedding of Geometries of Constant Curvature on a Pseudosphere

In mathematical studies, the geometries of maximum mobility are important. Examples of such geometries are Euclidean, pseudo-Euclidean, Lobachevsky, symplectic and so on. There is no complete classification of such geometries. They are distinguished as the geometries of the max- imum mobility in general, for example, the geometries from the Thurston list, and the geometries of the local maximum mobility. V. A. Kyrov developed a method for classifying the geometries of local maximum mobility, called the method of embedding.

On Characterization Determining Entire Functions and Consistent with Riman’s Type Equation Dirichlet’s Series with Finetly-Valued Coefficients

In the investigation were founded specifications for Dirichlet’s series coefficients, wherein this series determine entire function and measure up functional Riman’s type equation. Were shown that exist infinit multitude of such series that are different from Dirichlet’s L-functions.