глобальная устойчивость положительных решений

On the Positive Solutions of a Model System of Nonlinear Ordinary Differential Equations

This article investigates the properties of positive solutions of a model system of two nonlinear ordinary differential equations with variable coefficients. We found the new conditions on coefficients for which an arbitrary solution (x(t), y(t)) with positive initial values x(0) and y(0) is positive, nonlocally continued and bounded at t > 0. For this conditions we investigated the question of global stability of positive solutions via method of constructing the guiding function and the method of limit equations.