метод

Finite Integral Transformations Method — Generalization of Classic Procedure for Eigenvector Decomposition

The structural algorithm of the finite integral transformation method is presented as a generalization of the classical procedure of eigenvector decomposition. The initial-boundary problems described with a hyperbolic system of linear partial second order differential equations are considered. The general case of non-self adjoint solution by expansion in the vector-functions is possible only by the use of biorthogonal of finite integral transformations.

Finite Element Model of the Carotid Bifurcation

A fluid-solid interaction problem of a pulsation of the human carotid bifurcation was solved using finite element method. Hyperelastic orthotropic wall model that accounts for the carotid histological structure and in-vivo vessel geometry obtained from the CT-imaging were utilized. In-vivo blood flow boundary conditions for the problem were determined using Doppler Ultrasound.