periodic at infinity functions

About harmonic analysis of periodic at infinity functions

We consider slowly varying and periodic at infinity multivariable functions in Banach space. We introduce the notion of Fourier series of periodic at infinity function, study the properties of Fourier series and their convergence. Basic results are derived with the use of isometric representations theory. 

Wiener's theorem for periodic at infinity functions

 In this article banach algebra of periodic at infinity functions is defined. For this class of functions notions of Fourier series and absolutely convergent Fourier series are introduced. As a result Wiener's theorem analog devoted to absolutely convergent Fourier series for periodic at infinity functions was proved.