stress-strain state

Repair Technology Basis of Turbine Disks by Using StressStrain State Parameters

Stress-strain state of power steam turbine disks under operation conditions including both contouran dtighten loadings is considered. Full-size elastic-plastic stress-strain state analysis of turbine disk for different variants of considering key geometries is represented. As a result of numerical calculations three critical zones of turbine disk are defined. Proposed design modifications and repair technology to existing in-service power steam turbine disks by removing of damaged material volume are analyzedand substantiate donastress state parameters basis.

Numerical Study of Stress-Strain State of a Thin Anisotropic Rectangular Plate

Static bending of a thin rectangular anisotropic plate is considered in the framework of Kirchhoff hypotheses. At each point of the plate there is one plane of elastic symmetry parallel to the middle plane of the plate. It is assumed that the type of boundary conditions does not change along each of the straight sides. By applying of a modified method of spline collocation the twodimensional boundary value problem for the determination of deflection is reduced to a boundary value problem for the system of ordinary differential equations, which is solved numerically.

Investigation of Harmonic Waves in the Viscoelastic Layer

The paper deals with the study of harmonic waves in the viscoelastic layer. The properties of the material are described by the constitutive equations in the integral form. The fractional exponential function of Rabotnov is chosen as a kernel of integral operator. Two cases are considered: symmetric stress-strain state (SSS) and asymmetric SSS. The properties of modes which change in time harmonically are investigated for the purpose of studying of the free vibrations. Dispersion equations for both cases are derived. The numerical solutions of dispersion equations are obtained.