Cite this article as:

Lukomskii D. S., Lukomskii S. F., Terekhin P. A. Solution of Cauchy Problem for Equation First Order Via Haar Functions. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2016, vol. 16, iss. 2, pp. 151-159. DOI: https://doi.org/10.18500/1816-9791-2016-16-2-151-159


Language: 
Russian
Heading: 
UDC: 
519.62

Solution of Cauchy Problem for Equation First Order Via Haar Functions

Abstract: 

In this article we consider a Cauchy problem for the first order differential equation and are looking for its numerical solution. For this aim we represent the derivative of the solution as Haar decomposition. We also obtain estimates of approximate solution. The method is computationally simple and applications are demonstrated through illustrative examples. These examples show that in some cases the error of the proposed method is much less, than in second order Runge – Kutta method.

References

1. Ohkita M., Kobayashi Y. An application of rationalized Haar functions to solution of linear differential equations // IEEE Transactions on Circuit and Systems. 1968. Vol. 33, iss. 9. P. 853–862.

2. Razzaghi M., Ordokhani Y. Solution of differential equations via rationalized Haar functions // Mathematics and computers in simulation. 2001. Vol. 56, iss. 3. P. 235–246.

3. Razzaghi M., Ordokhani Y. An application of rationalized Haar functions for variational problems // Applied Mathematics and Computation. 2001. Vol. 122, iss. 3. P. 353–364.

4. Lukomskii D. S. Primenenie sistemy Haara dlya resheniya zadachi Koshi [Application of Haar system for solving the Cauchy problem]. Matematika. Mehanika [Mathematics. Mechanics], Saratov, Saratov Univ. Press, 2014, iss. 14, pp. 47–50 (in Russian).

5. Lukomskii D. S., Terekhin P. A. Ob ocenke pogreshnosti resheniya zadachi Koshi s pomosch’yu sistem sjatiy i sdvigov [An error estimate for the Cauchy problem by using compression systems and shifts]. Trudy Matematicheskogo centra imeni N. I. Lobachevskogo [Proceedings of the Mathematical Centre named N. I. Lobachevsky]. Kazan, Kazan Matnematical Society, 2015, vol. 51, pp. 295–297 (in Russian).

Full text:
147