Cite this article as:
Kurdyumov V. P., Khromov A. P., Khalova V. A. A Mixed Problem for a Wave Equation with a Nonzero Initial Velocity. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2018, vol. 18, iss. 2, pp. 157-171. DOI: https://doi.org/10.18500/1816-9791-2018-18-2-157-171
A Mixed Problem for a Wave Equation with a Nonzero Initial Velocity
1. Burlutskaya M. Sh., Khromov A. P. Resolvent approach in the Fourier method. Dokl. Math., 2014, vol. 90, iss. 2, pp. 545–548. DOI: https://doi.org/10.1134/S1064562414060076
2. Krylov A. N. On Some Differential Equations of Mathematical Physics Having Applications in Engineering. Leningrad, Gosudarstv. Izdat. Tehn.-Teor. Lit., 1950. 368 p. (in Russian).
3. Kornev V. V., Khromov A. P. Resolvent approach to the Fourier method in a mixed problem for the wave equation. Comput. Math. Math. Phys., 2015, vol. 55, iss. 4, pp. 618–627. DOI: https://doi.org/10.1134/S0965542515040077
4. Kurdyumov V. P., Khromov A. P. Obosnovanie metoda Fu r’e dlia volnovogo uravneniia priminimal’nykh trebovaniiakh na iskhodnye dannye [Justification of the Fourier method for the wave equation with minimum requirements for initial data]. Matematika. Mekhanika [Mathematics. Mechanics]. Saratov, Saratov Univ. Press, 2015, iss. 17, pp. 32–36 (in Russian).
5. Gurevich A. P., Kurdyumov V. P., Khromov A. P. Justification of Fourier method in a mixed problem for wave equation with non-zero velocity. Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 2016, vol. 16, iss. 1, pp. 13–29 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2016-16-1-13-29
6. Khromov A. P. Behavior of the formal solution to a mixed problem for the wave equation. Comput. Math. Math. Phys., 2016, vol. 56, iss. 2, pp. 243–255. DOI: https://doi.org/10.1134/S0965542516020135
7. Steklov V. A. Fundamental Problems of Mathematical Physics. Moscow, Nauka, 1983. 432 p. (in Russian).
8. Petrovsky I. G. Lectures on partial differential equations. New York, Interscience, 1954. 245 p. (Russ. ed.: Moscow, Gosudarstv. Izdat. Tehn.-Teor. Lit., 1953. 360 p.)
9. Smirnov V. I. A Course of Higher Mathematics. Vol. 4. Reading, Mass., Addison-Wesley, 1964. (Russ. ed.: Moscow, Gostekhizdat, 1953. 804 p.)
10. Ladyzhenskaya O. A. Mixed Problems for Hyperbolic Equations. Moscow, Gostekhizdat, 1953. 282 p. (in Russian).
11. Il’in V. A. Selected Works. Vol. 1. Moscow, Maks-press, 2008. 727 p. (in Russian).
12. Il’in V. A. The solvability of mixed problems for hyperbolic and parabolic equations. Russ. Math. Surv., 1960, vol. 15, iss. 1, pp. 85–142.
13. Naimark M. A. Linear Differential Operators: Two Volumes Bound as One. Dover Publications, Inc., 2012. 528 p. (Russ. ed.: Moscow, Nauka, 1969. 528 p.)
14. Rasulov M. L. Contour Integral Method and Its Application to Problems f or Differential Equations. Moscow, Nauka, 1964. 462 p. (in Russian).
15. Vagabov A. I. Introduction to the Spectral Theory of Differential Operators. Rostov on Don, Izd-vo Rost. un-ta, 1994. 160 p. (in Russian).
16. Marchenko V. A. Sturm – Liouville Operators and Their Applications. Kiev, Naukova Dumka, 1977. 392 p. (in Russian).
17. Lavrentiev M. A., Shabat B. V. Methods of the Theory of Functions of a Complex Variable. Moscow, Nauka, 1965. 716 p. (in Russian).
18. Carleson L. On convergence and growth of partial sums of Fourier series. Acta Math., 1966, vol. 116, no. 1, pp. 135–157.