Cite this article as:

Sharapudinov I. I., Guseinov I. G. Polynomials Orthogonal with Respect to Sobolev Type Inner Product Generated by Charlier Polynomials. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2018, vol. 18, iss. 2, pp. 196-205. DOI: https://doi.org/10.18500/1816-9791-2018-18-2-196-205


Language: 
Russian
Heading: 
UDC: 
517.587

Polynomials Orthogonal with Respect to Sobolev Type Inner Product Generated by Charlier Polynomials

Abstract: 

The problem of constructing of the Sobol ev orthogonal polynomials sαr,n(x) generated by Char li er polynomialssαn(x) is considered. It is shown that the system of polynomials sαr,n(x) generated by Charlier polynomialsis complete in the space Wrl, consisted of the discrete functions, given on the grid Ω = {0, 1, . . .}. Wrlρisa H ilb ert space with the inner product hf, gi. An explicit formula in the form of sαr,k+r(x) =kPl=0brlx[l+r],where xm]= x(x −1) . . . (x − m + 1), is found. The connection between the polynomials sαr,n(x) and the classical Charlier polynomials sαn(x) in the form of sαr,k+r(x) = Urk·sαk+r(x) −r−1Pν=0Vrk,νx[ν]¸, wherefor the numbers Urk, Vrk,ν we found the explicit expressions, is established.

References

1. Iserles A., Koch P. E., Norsett S. P., Sanz-Serna J. M. On polynomials orthogonal with respect to certain Sobolev inner products. J. Approx. Theory, 1991, vol. 65, iss. 2, pp. 151–175. DOI: https://doi.org/10.1016/0021-9045(91)90100-O
2. Marcellan F., Alfaro M., Rezola M. L. Orthogonal polynomials on Sobolev spaces: old and new directions. J. Comput. Appl. Math., 1993, vol. 48, iss. 1–2, pp. 113–131. DOI: https://doi.org/10.1016/0377-0427(93)90318-6
3. Meijer H. G. Laguerre polynomials generalized to a certain discrete Sobolev inner product space. J. Approx. Theory, 1993, vol. 73, iss. 1, pp. 1–16. DOI: https://doi.org/10.1006/jath.1993.1029
4. Kwon K. H., Littlejohn L. L. The orthogonality of the Laguerre polynomials {L(−k)n(x)} for positive integers k. Ann. Numer. Anal., 1995, vol. 2, pp. 289–303.
5. Kwon K. H., Littlejohn L. L. Sobolev orthogonal polynomials and second-order differential equations. R ocky Mountain J. Math., 1998, vol. 28, pp. 547–594. DOI: https://doi.org/10.1216/r-mjm/1181071786
6. Marcellan F., Xu Y. On Sobolev orthogonal polynomials. arXiv:1403.6249v1 [math.CA].25 Mar 2014. 40 p.
7. Sharapudinov I. I., Gadzhieva Z. D. Sobolev orthogonal polynomials generated by Meixner polynomials. Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 2016, vol. 16, iss. 3, pp. 310–321 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2016-16-3-310-321
8. Sharapudinov I. I. Smeshannyj rjady po ortogonal’nym polinomam [Mixed Series in Orthogonal Polynomials]. Makhachkala, Izd-vo DNC RAN, 2004. 176 p. (in Russian).
9. Sharapudinov I. I. Mnogochleny, ortogonal’nye na setkah [Polynomials Orthogonal on Grids]. Makhachkala, Izd-vo Dag. gos. ped. un-ta, 1997. 252 p. (in Russian).
10. Bateman H., Erdelyi A. Higher Transcendental Functions. Vol. 2. New York, McGraw-Hill Book Company, 1953. 396 p. (Rus. ed.: Moscow, Nauka, 1974. 296 p.)
11. Shirjaev A. N. Verojatnost’-1 [Probability-1]. Moscow, MTsNMO, 2007. 552 p. (in Russian).

Short text (in English): 
Full text:
266