Cite this article as:
Lukashov А. L. Rational interpolation processes on several intervals. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2005, vol. 5, iss. 1, pp. 34-?.
Rational interpolation processes on several intervals
It is considered the Lagrange interpolation processes such that rational functions with fixed denominators play the role of polynomials vanishing at interpolation nodes. An estimate for Lebesgue constants is obtained for the case of rational functions deviated least from zero on a given system of intervals with maximally possible number of deviation points, and when the matrix of fixed poles is contained in a compact set outside of the system of intervals. V. N. Rusak and G. Min found earlier particular case (for the case of one interval).
[1] Бернштейн С. Н., “Об ограничении значений многочлена Pn(x) степени n на всем отрезке по его значениям в n + 1 точках отрезка”, Собр. соч., Т. 2, В 4 т., М., 1952, 107–126
[2] Дзядык В. К., Иванов В. В., “Об асимптотике и оценках равномерных норм интерполяционных многочленов Лагранжа по узлам Чебышева”, Матем. сб., 104 (1977), 337–351
[3] Турецкий А. Х., Теория интерполирования в задачах, Т. 1, Минск, 1968
[4] Турецкий А. Х., Теория интерполирования в задачах, Т. 2, Минск, 1977
[5] Привалов А. А., Теория интерполирования функций, Т. 1, 2, Саратов, 1990
[6] Szabados J., Vertesi Р., Interpolation of functions, Singapore, 1990 [7] Boyd J. P., “A numerical comparison of seven grids for polynomial interpolation on the interval”, Comp. Math. Appl., 38 (1999), 35–50
[7] Boyd J. P., “A numerical comparison of seven grids for polynomial interpolation on the interval”, Comp. Math. Appl., 38 (1999), 35–50
[8] Chen Q., Babushka I., “Approximate optimal points for polynomial interpolation of real functions in an interval and in а triangle”, Comput. Methods Appl. Mech. Engrg., 128 (1995), 405–417
[9] Hesthaven J. S., “From electrostatics to almost optimal nodal sets for polynomial interpolation in а simplex”, SIAМ J. Numer. Anal., 35 (1998), 655–676
[10] Mastroianni G., Occorsio D., “Optimal systems of nodes for Lagrange interpolation on bounded intervals: A survey”, J. Comp. Appl. Math., 134 (2001), 325–341
[11] Кilgore T. A., “A characterization of the Lagrange interpolating projection with minimal Tchebysheff norm”, J. Approx. Theory, 24 (1978), 273–288
[12] Boor С. de, Pinkus A., “Proof of the conjectures of Bernstein and Erdos concerning the optimal nodes for polynomial interpolation”, J. Approx. Theory, 24 (1978), 289– 303
[13] Уолш Дж. Л., Интерполяция и аппроксимация рациональными функциями в комплексной области, М., 1961
[14] Русак В. Н., “О сходимости одного обобщенного интерполяционного полинома”, Докл. АН БССР, 6 (1962), 209–211
[15] Ровба Е. А., “О рациональной интерполяции функции |x|”, Изв. АН БССР. Сер. Физ.-матем. науки, 1989, № 5, 39–46
[16] Rovba E. A., “Orthogonal systems of rational functions on the segment and quadrature of Gauss-type”, Math. Balk., 13 (1999), 187–198
[17] Старовойтов А. П., О рациональной интерполяции с фиксированными полюсами, Деп. ВИНИТИ 22.05.83, № 2735-83, Ред. журн. “Изв. АН БССР. Сер. физ.- матем. наук”, Минск, 1983
[18] Min G., “Lagrange interpolation and quadrature formula in rational systems”, J. Approx. Theory, 95 (1998), 123–145
[19] Damelin S. B., “The weighted Lebesgue constant of Lagrange interpolation for exponential weights on [−1, 1]”, Acta Math. Hung., 81 (1998), 223–240
[20] Kubayi D. G., “Bounds for weighted Lebesgue functions for exponential weights”, J. Comp. Appl. Math., 133 (2001), 429–443
[21] Szabados J., “On some proЬlems of weighted polynomial approximation and interpolation”, New developments in approximation theory, N.Y., 1999, 315–328
[22] Vertesi Р., “On the Lebesgue function and Lebesgue constant: а tribute to Paul Erdos”, Paul Erdos and its mathematics, Budapest, 2002, 705–728
[23] Bagby Т. Н., “On interpolation by rational functions”, Duke Math. J., 36 (1969), 95–104
[24] Bagby Т. Н., “Rational interpolation with restricted poles”, J. Approx. Theory, 7 (1973), 1–7
[25] Calle В. de la, Lagomasino G. L., “Convergence of multipoint Pade-type approximants”, J. Approx. Theory, 109 (2001), 257–278
[26] Gardiner S. J., Pommerenke С., “Balayage properties related to rational interpolation”, Constr. Approx., 18 (2002), 417–426
[27] Гончар А. А., Лопес Г. Л., “О теореме Маркова для многоточечных аппроксимаций”, Матем. сб., 105 (1978), 512–524
[28] Бейкер Дж., Грейвс-Моррис П., Аnпроксимации Паде, М., 1986 [29] Lagomasino (Lopez) G., “Survey on multipoint Pade approximation to Markov type meromorhic functions and asymptotic properties of the orthogonal polynomials generated by them”, Lect. Notes Math., 1171, 1985, 309–316
[29] Lagomasino (Lopez) G., “Survey on multipoint Pade approximation to Markov type meromorhic functions and asymptotic properties of the orthogonal polynomials generated by them”, Lect. Notes Math., 1171, 1985, 309–316
[30] Galluci М. A., Jones W. B., “Rational approximations corresponding to Newton series (Newton–Pade approximants)”, J. Approx. Theory, 17 (1976), 366–392
[31] Antoulas A. C., Anderson B. D. О., “A summary of recent results on the scalar rational interpolation problem”, Proc. 25th IEEE Conf. Decis. Control (1986), 2187– 2188
[32] Baltensperger R., “Some results on linear rational trigonometric interpolation”, Comput. Math. Appl., 43 (2002), 737–746
[33] Berrut J.-P., “Rational functions for guaranteed and experimentally well-conditioned global interpolation”, Comput. Math. Appl., 15 (1988), 1–16
[34] Berrut J.-P., Mittelmann Н. D., “Rational interpolation through the optimal attachement of poles to the interpolating polynomial”, Numerical Algorithms, 23 (2000), 315–328
[35] Fournier J.-D., Pindor М., “Rational interpolation from stochastic data: а new Froissarts phenomenon”, Reliable Computing, 6 (2000), 391–409
[36] Gutknecht М. Н., In what sense is the rational interpolation problem well posed? Consr. Approx., 6 (1990), 437–450
[37] Nananukul S., Gong W.-B., “Rational interpolation for stochastic DES’s: convegence issues”, IEEE Trans. Autom. Control, 44 (1999), 1070–1073
[38] Ravi М. S., “Geometric methods in rational interpolation theory”, Lin. Alg. Appl., 258 (1997), 159–168
[39] Henry М. S., Swetits J. J., “Lebesgue and strong unicity constants for Zolotareff polynomials”, Rocky Mount. J. Math., 12 (1982), 547–556
[40] Лебедев В. И., “Экстремальные многочлены и методы оптимизации вычислительных алгоритмов”, Матем. сб., 195:210 (2004), 21–66
[41] Lukashov A. L., “On Chebyshev–Markov rational fractions over several intervals”, J. Approx. Theory, 95 (1998), 333–352
[42] Лукашов А. Л., “Неравенства для производных рациональных функций на нескольких отрезках”, Изв. РАН. Сер. Матем., 68:23 (2004), 115–138
[43] Ransford Т., Potential theory in the complex plane, Cambridge, 1995
[44] Stahl H., Totik V., General orthogonal polynomials, N.Y., 1992
[45] Peherstorfer F., Steinbauer R., “Strong asymptotics of orthonormal polynomials with the aid of Green’s function”, SIAM J. Math. Anal., 32 (2000), 385–402
[46] Totik V., “Polynomial inverse images and polynomial inequalities”, Acta Math., 187 (2001), 139–160