Cite this article as:
Danchev P. V. Symmetrization in Clean and Nil-Clean Rings. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2020, vol. 20, iss. 2, pp. 154-160. DOI: https://doi.org/10.18500/1816-9791-2020-20-2-154-160
Symmetrization in Clean and Nil-Clean Rings
We introduce and investigate D-clean and D-nil-clean rings as well as some other closely related symmetric versions of cleanness and nil-cleanness. A comprehensive structural characterization is given for these symmetrically clean and symmetrically nil-clean rings in terms of Jacobson radical and its quotient. It is proved that strongly clean (resp., strongly nil-clean) rings are always D-clean (resp., D-nil-clean).Our results corroborate our recent findings published in Bull. Irkutsk State Univ., Math. (2019) and Turk. J. Math. (2019). We also show that weakly nil-clean rings defined as in Danchev-McGovern (J. Algebra, 2015) and Breaz – Danchev – Zhou (J. Algebra & Appl., 2016) are actually weakly nil clean in the sense of Danchev-Ster (Taiwanese J. Math., ˇ 2015). This answers the question of the reviewer D. Khurana (Math. Review, 2017).
- Lam T. Y. A First Course in Noncommutative Rings. 2nd ed. (Graduate Texts in Math. Vol. 131). Berlin, Heidelberg, New York, Springer-Verlag, 2001. 388 p.
- Nicholson W. K. Lifting idempotents and exchange rings. Trans. Amer. Math. Soc., 1977, vol. 229, pp. 269–278.
- Diesl A. J. Nil clean rings. J. Algebra, 2013, vol. 383, pp. 197–211. DOI: https://doi.org/10.1016/j.jalgebra.2013.02.020
- Danchev P. V., McGovern W. Wm. Commutative weakly nil clean unital rings. J. Algebra, 2015, vol. 425, pp. 410–422. DOI: https://doi.org/10.1016/j.jalgebra.2014.12.003
- Danchev P. V. Left-right cleanness and nil cleanness in unital rings. The Bulletin of Irkutsk State University. Series Mathematics, 2019, vol. 27, pp. 28–35. DOI: https://doi.org/10.26516/1997-7670.2019.27.28
- Danchev P. V. A generalization of π-regular rings. Turk. J. Math., 2019, vol. 43, pp. 702– 711.
- Danchev P. V., Lam T. Y. Rings with unipotent units. Publ. Math. Debrecen, 2016, vol. 88, pp. 449–466. DOI: https://doi.org/10.5486/PMD.2016.7405
- Azumaya G. Strongly π-regular rings. J. Fac. Sci. Hokkaido Univ. (Ser. I, Math.), 1954, vol. 13, pp. 34–39.
- Nicholson W. K. Strongly clean rings and Fitting’s lemma. Commun. Algebra, 1999, vol. 27, pp. 3583–3592.
- Danchev P. V. Generalizing nil clean rings. Bull. Belg. Math. Soc. Simon Stevin, 2018, vol. 25, no. 1, pp. 13–29. DOI: https://doi.org/10.36045/bbms/1523412048
- Ster J. Nil-clean quadratic elements. ˇ J. Algebra & Appl., 2017, vol. 16, no. 10, p. 1750197. DOI: https://doi.org/10.1142/S0219498817501973
- Breaz S., Danchev P., Zhou Y. Rings in which every element is either a sum or a difference of a nilpotent and an idempotent. J. Algebra & Appl., 2016, vol. 15, no. 08, p. 1650148. DOI: https://doi.org/10.1142/S0219498816501486
- Danchev P., Ster J. Generalizing ˇ π-regular rings. Taiwanese J. Math., 2015, vol. 19, no. 6, pp. 1577–1592. DOI: https://doi.org/10.11650/tjm.19.2015.6236
- Khurana D. Math. Review 3528770 (2017).
- Danchev P. V. Weakly UU rings. Tsukuba J. Math., 2016, vol. 40, no. 1, pp. 101–118.
- Ko¸san M. T., Yildirim T., Zhou Y. Rings with x n − x nilpotent. J. Algebra & Appl., 2020, vol. 19. DOI: https://doi.org/10.1142/S0219498820500656
- Hirano Y., Tominaga H., Yaqub A. On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element. Math. J. Okayama Univ., 1988, vol. 30, pp. 33–40.