Cite this article as:
. . Quadratic Hermite – Padé Approximants of Exponential Functions. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2014, vol. 14, iss. 4, pp. 387-395. DOI: https://doi.org/10.18500/1816-9791-2014-14-4-387-395
Language:
Russian
Heading:
UDC:
517.538.52+517.538.53
Quadratic Hermite – Padé Approximants of Exponential Functions
Abstract:
The paper deals with extremal properties of diagonal quadratic Hermite – Pad’e approximants of type I for exponential system {eλjz}2j =0 with arbitrary real λ0, λ1, λ2. Proved theorems complement known results of P. Borwein, F. Wielonsky.
Key words:
References
- Hermite C. Sur la généralisation des fractions continues algébriques // Ann. Math. Pura. Appl. Ser. 2A. 1883. Vol. 21. P. 289–308.
- Hermite C. Sur la fonction exponentielle // C. R. Akad. Sci.(Paris). 1873. Vol. 77. P. 182–293.
- Mahler K. Perfect systems // Comp. Math. 1968. Vol. 19, № 2. P. 95–166.
- Mahler K. Zur Approximation der Exponentialfunktion und des Logarithmus // J. Reine Angew. Math. 1931. Vol. 166. P. 118–150.
- Padé H. Memoire sur les developpements en fractions continues de la fonctial exponential // Ann. École Norm. Sup. (Paris). 1899. Vol. 16, № 3. P. 394–426.
- Aptekarev A. I., Stahl H. Asymptotics of Hermite – Padé polynomials // Progress in Approximation Theory / eds. A. A. Gonchar, E. B. Saff. N.Y. ; Berlin : Springer-Verlag, 1992. P. 127–167.
- Mahler K. Applications of some formulas by Hermite to the approximation of exponentials and logarithms // Math. Ann. 1967. Vol. 168. P. 200–227.
- Chudnovsky G. V. Hermite – Padé approximations to exponential functions and elementary estimates of the measure of irrationality of ¼ // Lecture Notes in Math. Vol. 925. N. Y. ; Berlin : Springer-Verlag, 1982. P. 299–322.
- Borwein P. B. Quadratic Hermite – Padé approximation to the exponential function // Const. Approx. 1986. Vol. 62. P. 291–302.
- Wielonsky F. Asymptotics of Diagonal Hermite – Padé Approximants to ez // J. Approx. Theory. 1997. Vol. 90, № 2. P. 283–298.
- Trefethen L. N. The asymptotic accuracy of rational best approximations to ez on a disk // J. Approx. Theory. 1984. Vol. 40, № 4. P. 380–384.
- Braess D. On the conjecture of Meinardus on rational approximation of ex // J. Approx. Theory. 1984. Vol. 40, № 4. P. 375–379.
- Старовойтов А. П. Аппроксимации Эрмита – Паде для системы функций Миттаг –Леффлера // Проблемы физики, математики и техники. 2013. № 1(14). C. 81–87.
- Аптекарев А. И. О сходимости рациональных аппроксимаций к набору экспонент // Вестн. Моск. ун-та. Сер. 1, Математика. Механика. 1981. № 1. С. 68–74.
- Сидоров Ю. В., Федорюк М. В., Шабунин М. И. Лекции по теории функций комплексного переменного. М. : Наука, 1989. 477 с.
- Walsh J. L. Interpolaton and approximation by rational functions in the complex domain. Publ. by the Amer. Math. Soc., 1960. 508 p.
- Маркушевич А. И. Теория аналитических функций : в 2 т. Т. 1. М. : Наука, 1967. 486 с.
- Pólya G., Szegö G. Problems and Theorems in Analysis. Vol. 1. Berlin : Springer-Verlag, 1972. 419 p.
Full text:
92