многоугольный граф

The Sperner Property for Polygonal Graphs Considered as Partially Ordered Sets

A finite poset is said to have the Sperner property if at least one of its maximum antichains is formed from elements of the same height. A polygonal graph is a directed acyclic graph derived from a circuit by some orientation of its edges. The reachability relation of a polygonal graph is a partial order. A criterion is presented for posets associated with polygonal graphs to have the Sperner property.

The ordered set of connected parts of a polygonal graph

Under a polygonal graph is meant an oriented graph obtained from a cycle by some orientation of its edges. The set of all abstract (i.e. pairwise non-isomorphic) connected parts of a polygonal graph is ordered by graph embedding. Polygonal graphs are characterized for which this ordered set is a lattice.