волновое число
Coupled equations of hemitropic thermoelastic micropolar continuum formulated in terms of displacement vector, microrotation vector and temperature increment are considered. Thermodiffusion mechanism of heat transport is assumed. Hemitropic thermoelastic constitutive constants are reduced to a minimal set retaining hemitropic constitutive behaviour. Coupled plane waves propagating in thermoelastic media are studied. Spatial polarizations of the coupled plane waves are determined. Bicubic equations for wavenumbers are obtained and then analyzed.
The paper is devoted to a study of cross-coupled type-III generalized thermoelastic waves of a given azimuthal order propagating via a long cylindrical waveguide with circular cross-section. Sidewall of the waveguide is assumed free from tractions and permeable to heat. The study is carried out in the framework of coupled generalized theory of type-III thermoelasticity (GNIII) consistent with the fundamental principles of continuum thermomechanics. The type-III theory combines the both possible mechanisms of heat transfer: thermodiffusion and wave.
The paper is devoted to a study of cross-coupled type-III generalized thermoelastic waves propagation via a long cylindrical waveguide. The sidewall of the waveguide is assumed free from tractions and permeable to heat. The analysis is carried out in the framework of coupled generalized theory of GNIII- thermoelasticity consistent with the basic thermodynamic principles. The theory combines the both possible mechanisms of heat transfer: thermodiffusion and wave.
The present study is devoted to propagation of plane harmonic GNIII thermoelastic waves by the coupled system of linear equations of motion and heat transport based on the Green & Naghdi theory of thermoelasticity. Analytical findings and exact solutions are primarily related to complex wavenumbers, phase velocities and attenuation coefficients of the plane GNIII-thermoelastic waves. Complete analysis of all analytical branches of the wavenumbers is given.
In the present paper in the framework of the linear non-dissipative coupled thermoelasticity (GNII, hyperbolic thermoelasticity), treating the heat transport as propagation with finite speed of undamped waves of second sound, harmonic coupled thermoelastic waves propagating in an infinite free from tractions thermoisolated cylinder are studied. Dispersionrelation is derived for this type of thermoelastic waves for an arbitrary azimuthal order. Numerical results for wave numbers depending on frequency are obtained.
The present paper is devoted to an analysis of plane harmonic coupled thermoelastic waves of displacements, microrotations and temperature propagating in continua.The analysis is carried out in the framework of linear type-I (GNI/CTE) theory of thermoelastic micropolar continuum. Additional microrotations and moment stresses are taken into consideration. Propagating wave surfaces of weak discontinuities of displacements, microrotations, and temperature are studied by compatibility conditions technique due to Hadamard and Thomas.
Numerical and analytical aspects of generating