Образец для цитирования:
Прохоров Д. В., Захаров А. М. ИНТЕГРИРУЕМОСТЬ ЧАСТНОГО ВИДА УРАВНЕНИЯ ЛЁВНЕРА // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2010. Т. 10, вып. 2. С. 19-23. DOI: https://doi.org/10.18500/1816-9791-2010-10-2-19-23
ИНТЕГРИРУЕМОСТЬ ЧАСТНОГО ВИДА УРАВНЕНИЯ ЛЁВНЕРА
Приводится решение в квадратурах частного случая уравнения Лёвнера для полуплоскости.
1. L¨owner, K. Untersuchungen ¨uber schlichte konforme Abbildungen des Einheitskreises. I / K. L¨owner // Math. Ann. – 1923. – V. 89, № 1–2. – P. 103–121.
2. Александров, И.А. Параметрические продолжения в теории однолистных функций / И.А. Александров. М.: Наука, 1976.
3. Kager, W. Exact solutions for Loewner evolutions / W. Kager, B. Nienhuis, L.P. Kadanoff // J. Statist. Phys. – 2004. V. 115, № 3–4. – P. 805–822.
4. Куфарев, П.П. Одно замечание об уравнении Л¨евнера / П.П. Куфарев // Докл. АН СССР. – 1947. – V. 57. – P. 751–754.
5. Marshall, D. The L¨owner differential equation and slit mappings / D. Marshall, S. Rohde // J. Amer. Math. Soc. – 2005. – V. 18, № 4. – P. 763–778.
6. Lind, J. A sharp condition for the L¨owner equation to generate slits / J. Lind // Ann. Acad. Sci. Fenn. Math. – 2005. – V. 30, № 1. – P. 143–158.
7. Prokhorov, D. Singular and tangent slit solutions to the L¨owner equation / D. Prokhorov, A. Vasil’ev // Analysis and Mathematical Physics. Trends in Mathematics / Ed. B. Gustafsson, A. Vasil’ev. – Basel: Birkhauser, 2009. – P. 451–459.