B работе рассматриваются обобщённые системы Хаара, порождённые (вообще говоря, неограниченной) последовательно- стью {pn} ∞n=1 и определённые на модифицированном отрезке [0, 1]∗ , т. е. на отрезке [0, 1] c «раздвоенными» {pn} — рациональными точками. Основной результат данной работы — установление поточечной оценки между абсолютной величиной разности между непрерывной в заданной точке функции и её n-й частичной суммой Фурье и «поточечным» модулем непрерывности (это понятие (поточечный модуль непрерывности ωn(x, f)) также определяется в данной работе) заданной функции.