единственность

О восстановлении интегродифференциальных операторов по функции Вейля

Исследуются обратные спектральные задачи для интегродифференциальных операторов второго порядка, которые являются возмущением оператора Штурма–Лиувилля интегральным вольтерровским оператором. Основное внимание уделяется нелинейной обратной задаче восстановления потенциала по заданной функции Вейля при условии,что ядро интегрального оператора известно априори.Получены свойства спектральных характеристик и функции Вейля, приведен алгоритм решения обратной задачи и установлена единственность решения. Для решения обратной задачи используется метод эталонных моделей.

МЕТОД КОНЕЧНЫХ ИНТЕГРАЛЬНЫХ ПРЕОБРАЗОВАНИЙ — ОБОБЩЕНИЕ КЛАССИЧЕСКОЙ ПРОЦЕДУРЫ РАЗЛОЖЕНИЯ ПО СОБСТВЕННЫМ ВЕКТОР-ФУНКЦИЯМ

Показано, что структурный алгоритм метода конечных интегральных преобразований является обобщением классической процедуры разложения по собственным вектор-функциям. Рассматриваются начально-краевые задачи, описываемые гиперболической системой линейных дифференциальных уравнений в частных производных второго порядка. Доказывается, что в общем случае несамосопряженного оператора решение путем разложения по собственным вектор-функциям возможно лишь в результате применения биортогональных конечных интегральных преобразований.

Исследование интегродифференциальных уравнений фильтрации

В предлагаемой статье для исследования процесса зарастания отверстий в решетчатой структуре, играющей роль фильтра, использован стохастический подход. Сформулирована и исследована система кинетических уравнений, моделирующих процесс диффузной фильтрации на основе указанного подхода. Доказана теорема существования и единственности решения применительно к случаю непрерывной плотности. Получены представления решения в виде равномерно сходящегося и асимптотического рядов, а также изучен характер его поведения на бесконечности.