В статье рассматривается краевая задача второго рода, для уравнений равновесия «в смешанной форме», определяющая неклассическую математическую модель для шарнирно закрепленной изотропной и однородной пластины в рамках обобщенных гипотез Тимошенко с учетом начальных неправильностей. Для указанной задачи впервые доказывается существование обобщенного решения и слабая компактность множества приближенных решений, получаемого с помощью метода Бубнова–Галеркина по схеме В. З. Власова.