Впервые изучена обратная задача для стандартно го уравнения Штурма – Лиувилля со спектральным параметром ρ и потенциалом, кусочно-целым на спрямляемой кривой γ ⊂ C, у которой задана только начальная точка. Ограниченная на кривой γ функция Q является кусочно-целой на ней, если γ можно разбить конечным числом точек на участки, на которых Q совпадает с целыми функциями, ра зличными на соседних участках. Точки разбиения, начальная и конечная точки кривой называются критическими точками.