полином

ОБ АСИМПТОТИКЕ МНОГОЧЛЕНОВ, ОРТОГОНАЛЬНЫХ НА ПРОИЗВОЛЬНЫХ СЕТКАХ

В статье исследуются асимптотические свойства многочленов ln(x), ортогональных с весом e −xj ∆tj на произвольных сетках, состоящих из бесконечного числа точек полуоси [0, ∞). А именно установлена асимптотическая формула, в которой при возрастании n вместе с N асимптотическое поведение этих многочленов близко к асимптотическому поведению многочленов Лагерра.

О численной аппроксимации дифференциальных полиномов

Получена формула аппроксимации дифференциальных операторов специального вида. Указана оценка абсолютной погрешности аппроксимации. Показано, что рассматриваемая аппроксимация является точной на многочленах.