полиномы Бернштейна

Полиномы Бернштейна для стандартного модуля на симметричном отрезке

Изучаются полиномы Бернштейна на симметричном отрезке. Установлены основные алгебраические факты, связанные с полиномами Бернштейна от стандартного модуля. В частности, на основе формулы Темпла получены рекуррентные соотношения, из которых строго выведено разложение Поповичу. Указаны удобные формулы для первой и второй производных. Как итог, полностью обоснована явная алгебраическая запись для полиномов Бернштейна от модуля. Отмечены некоторые следствия. 

О сходимости последовательности операторов Бернштейна – Канторовича в пространствах Лебега с переменным показателем

Пусть E = [0, 1], 1 6 p(x) — измеримая и существенно ограниченная на E функция. Через L p(x) (E) обозначим множество измеримых на E функций f, для которых R E |f(x)| p(x) dx < ∞. Исследуется сходимость последовательности операторов Бернштейна – Канторовича {Kn(f, x)} ∞n=1 к функции f в пространствах Лебега с переменным показателем L p(x) (E).

Правило склеивания для полиномов Бернштейна на симметричном отрезке

Изучаются специальные закономерности, возникающие в последовательности полиномов Бернштейна на симметричном отрезке [−1,1]. Установлено явное правило регулярного попарного совпадения (правило склеивания), действующее для полиномов Бернштейна в случае кусочно-линейной порождающей функции с рациональными абсциссами точек излома. Показана точность этого правила для выпуклых кусочно-линейных порождающих функций. Отмечена возможность «случайных» склеиваний полиномов Бернштейна в невыпуклом случае. Рассмотрены примеры и иллюстрации.