стандартный многочлен

О квазимногочленах Капелли. II

В данной работе продолжено исследование некоторого вида многочленов типа Капелли (квазимногочленов Капелли), принадлежащих свободной ассоциативной алгебре F{X S Y }, рассматриваемой над произвольным полем F и порожденной двумя непересекающимися счетными множествами X, Y . Доказано, что если char F = 0, то среди квазимногочленов Капелли степени 4k − 1 существуют такие, которые не являются ни следствиями стандартного многочлена S − 2k, ни тождествами матричной алгебры Mk(F).

К теореме Ченга. III

В данной статье рассмотрены различные полилинейные многочлены типа Капелли, принадлежащие свободной ассоциативной алгебре F {X ∪Y } над произвольным полем F , порожденной счетным множеством X ∪ Y . Найдены формулы, выражающие коэффициенты многочлена Ченга R(¯x, ¯y|¯w). Доказано, что если характеристика поля F не равна двум, то многочлен R(¯x, ¯y|¯w) может быть различными способами представлен в виде суммы двух следствий стандартного многочлена S−(¯x). В статье приведено разложение многочлена Ченга H (¯x, ¯y|¯w), отличное от уже известного.

К теореме Ченга. II

В данной  работе  введены  полилинейные  многочлены  H+ (¯x, ¯y| ¯ w),   H− (¯x, ¯y| ¯ w)  ∈  F {X ∪ Y},  сумма  которых  является  многочленом  Ченга  H (¯x, ¯y| ¯ w),  где F {X ∪ Y} — свободная ассоциативная алгебра над произвольным полем F характеристики не два, порожденная счетным множеством X ∪ Y . Доказано, что каждый из них является следствием стандартного многочлена S−(¯x). В частности, показано, что квазимногочлены Капелли b2m−1 (¯xm, ¯y) и h2m−1 (¯xm, ¯y) также следуют из многочлена S−m (¯x).

О квазимногочленах Капелли

В данной работе рассматривается класс многочленов типа Капелли в свободной ассоциативной алгебре F{Z}, где F — произвольное поле, Z — счетное множество. Интерес к этим объектам связан с предположением о том, что введенные многочлены (квазимногочлены Капелли) некоторой нечетной степени будут содержаться в базисе идеала Z2 градуированных тождеств Z2-градуированной матричной алгебры M(m,k)(F),когда char F = 0.Всвязи с этим в статье приведены основные свойства квазимногочленов Капелли.

К теореме Ченга

В данной работе введены в рассмотрение полилинейные многочлены H (¯ x, ¯ y|¯ w) и R(¯ x, ¯ y|¯ w), сумма которых является многочленом Ченга F(¯ x, ¯ y|¯ w). Методом математической индукции доказано, что каждый из них есть следствие стандартного многочлена S−(¯ x). В частности, показано, что двойной многочлен Капелли C2m−1(¯ x, ¯ y)также следует из многочлена S m(¯ x). Здесь же найдена минимальная степень многочлена C2m−1(¯ x, ¯ y),при которой он является полиномиальным тождеством матричной алгебры Mn(F).