superalgebra

Формула Пиери и специализация супермногочленов Якоби

Ранее было доказано, что суперхарактеры Эйлера супералгебры Ли osp(2m + 1, 2n) являются предельным случаем супермногочленов Якоби. Этот результат был первым примером, показывающим, какого рода связи возникают между собственными функциями деформированных операторов Калоджеро – Мозера – Сазерленда и теорией представлений. К сожалению, доказательство этого результата было чисто вычислительным. В данной работе мы предлагаем более простое и концептуальное доказательство, основная идея которого заключается в использовании с самого начала формулы Пиери.

Операторы КМС типа B (1,1) и супералгебра Ли osp(3, 2)

Основной целью данной статьи является исследование связей между теорией представлений супералгебры Ли osp(3, 2) и дифференциальным оператором Калоджеро-Мозера-Сазерленда (КМС) типа B(1, 1). Этот дифференциальный оператор зависит (полиномиально) от трёх параметров. Соответствующие полиномиальные собственные функции также зависят от трёх параметров, но в общем случае коэффициенты этих собственных функций имеют рациональную зависимость от параметров. Важным является вопрос о специализации собственных функций при заданных значениях параметров.