Пусть даны 2s точек yi: −¼ ≤ y2s < . . . < y1 < ¼. Отправляясь от этих точек, определим точки yi для всех целых
i при помощи равенства yi = yi+2s + 2¼. Будем писать f ∈ △(1)(Y ), если f(x) — 2¼-периодическая непрерывная
функция и f(x) не убывает на [yi, yi−1], если i нечетное; f(x) не возрастает на [yi, yi−1], если i четное. Обозначим через
E(1) n (f; Y ) величину наилучшего равномерного приближения функции f ∈ △(1)(Y ) тригонометрическими полиномами