условие Дини – Липшица

О равномерной ограниченности некоторых семейств интегральных операторов свертки в весовых пространствах Лебега с переменным показателем

Пусть для λ > 1 задана измеримая 2π-периодическая и существенно ограниченная функция (ядро) kλ = kλ(x). Исследуются условия на вес w(x) и ядра {kλ(t)}λ>1, при которых семейство операторов свертки {Kλf(x) : Kλf(x) = REf(t)kλ(t − x) dt}λ>1 (E = [−π, π]) равномерно ограничено в весовых пространствах Лебега с переменным показателем — L p(x)2π,w.