Образец для цитирования:

Хромов А. П., Бурлуцкая М. Ш. Классическое решение методом Фурье смешанных задач при минимальных требованиях на исходные данные // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2014. Т. 14, вып. 2. С. 171-198. DOI: https://doi.org/10.18500/1816-9791-2014-14-2-171-198


Язык публикации: 
русский
Рубрика: 
УДК: 
517.95+517.984

Классическое решение методом Фурье смешанных задач при минимальных требованиях на исходные данные

Аннотация: 

В статье дается новое краткое доказательство теоремы В. А. Чернятина о классическом решении методом Фурье смешанной задачи для волнового уравнения с закрепленными концами при минимальных требованиях на начальные данные. Далее, рассматривается подобная задача для простейшего функционально-дифференциального уравнения первого порядка с инволюцией в случае закрепленного конца, и также получаются результаты окончательного характера. Эти результаты получаются благодаря существенному использованию идей А. Н. Крылова по ускорению сходимости рядов, подобных рядам Фурье. Без доказательства приводятся результаты и для других схожих случаев смешанных задач.

Библиографический список

1. Стеклов В. А. Основные задачи математической физики. М. : Наука, 1983. 432 с.

2. Петровский И. Г. Лекции об уравнениях с частными производными. М. ; Л. : ГИТТЛ, 1953. 360 с.

3. Смирнов В. И. Курс высшей математики : в 4 т. М. : Гостехиздат, 1953. Т. 4. 804 с.

4. Ладыженская О. А. Смешанная задача для гиперболического уравнения. М. : Гостехиздат, 1953, 282 с.

5. Ильин В. А. Избранные труды : в 2 т. М. : Изд-во ООО «Макс-пресс», 2008. Т. 1. 727 с.

6. Ильин В. А. О разрешимости смешанных задач для гиперболических и параболических уравнений // УМН. 1960. Т. 15, вып. 2. С. 97–154.

7. Чернятин В. А. Обоснование метода Фурье в смешанной задаче для уравнений в частных производных. . : Изд-во Моск. ун-та, 1991. 112 с.

8. Крылов А. Н. О некоторых дифференциальных уравнениях математической физики, имеющих приложения в технических вопросах. М. ; Л. : ГИТТЛ, 1950. 368 с.

9. Крылов А. Н. Лекции о приближенных вычислениях. М. ; Л. : ГИТТЛ, 1950. 398 с.

10. Lanczos C. Discourse of Fourier Series. Edinburgh ; London : Oliver and Boyd, Ltd., 1966. 255 p.

11. Нерсесян А. Б. Ускорение сходимости разложений по собственным функциям // Докл. НАН Армении.2007. T. 107, № 2. C. 124–131.

12. Чернятин В. А. К уточнению теоремы существования классического решения смешанной задачи для одномерного волнового уравнения // Дифференциальные уравнения. 1985. Т. 21, № 9. С. 1569–1576.

13. Чернятин В. А. К решению одной смешанной задачи для неоднородного уравнения с частными производными четвертого порядка // Дифференциальные уравнения. 1985. Т. 21, № 2. С. 343–345.

14. Чернятин В. А. О необходимых и достаточных условиях существования классического решения смешанной задачи для одномерного волнового уравнения // Докл. АН СССР. 1986. Т. 287, № 5. С. 1080–1083.

15. Чернятин В. А. Классическое решение смешанной задачи для неоднородного гиперболического уравнения // Численные методы решения краевых и начальных задач для дифференциальных уравнений. М. : Изд-во Моск. ун-та, 1986. С. 17–36.

16. Чернятин В. А. К уточнению теоремы существования решения смешанной задачи для неоднородного уравнения теплопроводности // Численный анализ : методы, алгоритмы, программы. М. : Изд-во Моск. ун-та, 1988. С. 126–132.

17. Чернятин В. А. О разрешимости смешанной задачи для неоднородного гиперболического уравнения // Дифференциальные уравнения. 1988. Т. 24, № 4. С. 717–720.

18. Андреев А. А. О корректности краевых задач для некоторых уравнений в частных производных с карлемановским сдвигом // Дифференциальные уравнения и их приложения : тр. 2-го междунар. семинара. Самара, 1998. С. 5–18.

19. Dankl Ch. G. Differential-Difference Operators Associated to Reflection Groups // Trans. Amer. Math. Soc. 1989. Vol. 311, № 1. P. 167–183.

20. Платонов С. С. Разложение по собственным функциям для некоторых функционально-дифференциальных операторов // Тр. Петрозавод. гос. ун-та. Сер. математическая. 2004. Вып. 11. С. 15–35.

21. Хромов А. П. Об обращении интегральных операторов с ядрами, разрывными на диагоналях // Мат. заметки. 1998. Т. 64, № 6. С. 932–949. DOI: 10.4213/mzm1472.

22. Бурлуцкая М. Ш., Курдюмов В. П., Луконина А. С., Хромов А. П. Функционально-дифференциальный оператор с инволюцией // Докл. АН. 2007. Т. 414. № 4. С. 443–446.

23. Корнев В. В., Хромов А. П. О равносходимости разложений по собственным функциям интегральных операторов с ядрами, допускающими разрывы производных на диагоналях // Мат. сб. 2001. Т. 192, № 10. С. 33–50.

24. Курдюмов В. П. Хромов А. П. О базисах Рисса из собственных функций интегральных операторов с ядрами, разрывными на диагоналях // Изв. АН. Сер. математическая. 2012. Т. 76, № 6. С. 106–121.

25. Курдюмов В. П. Хромов А. П. О базисах Рисса из собственных и присоединенных функций функционально-дифференциального оператора переменной структуры // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2007. Т. 7, вып. 2. С. 20–25.

26. Корнев В. В., Хромов А. П. Оператор интегрирования с инволюцией, имеющей степенную особенность // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2008. Т. 8, вып. 4. С. 18–33.

27. Бурлуцкая М. Ш., Хромов А. П. Об одной теореме равносходимости на всем отрезке для функционально-дифференциальных операторов // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2009. Т. 9, вып. 4, ч. 1. С. 3–10.

28. Бурлуцкая М. Ш., Хромов А. П. Обоснование метода Фурье в смешанных задачах с инволюцией // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2011. Т. 11, вып. 4. С. 3–12.

29. Халова В. А., Хромов А. П. Интегральный оператор с негладкой инволюцией // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2013. Т. 3, вып. 1, ч. 1. С. 40–45.

30. Хромов А. П. Смешанная задача для дифференциального уравнения с инволюцией и потенциалом специального вида // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2010. Т. 10, вып. 4. С. 17–22.

31. Бурлуцкая М. Ш., Хромов А. П. Классическое решение для смешанной задачи с инволюцией // Докл. АН. 2010. Т. 435, № 2. С. 151–154.

32. Бурлуцкая М. Ш., Хромов А. П. Метод Фурье в смешанной задаче для уравнения первого порядка с инволюцией // Журн. выч. мат. и мат. физ. 2011. Т. 51, № 12. С. 2233–2246.

33. Бурлуцкая М. Ш., Хромов А. П. Смешанные задачи для гиперболических уравнений первого порядка с инволюцией // Докл. АН. 2011. Т. 441, № 2. С. 151–154.

34. Бурлуцкая М. Ш. Смешанная задача с инволюцией на графе из двух ребер с циклом // Докл. АН. 2012. Т. 447, № 5. С. 479—482.

35. Марченко В. А. Операторы Штурма–Лиувилля и их приложения. Киев : Наук. думка, 1977. 392 с.

36. Наймарк М. А. Линейные дифференциальные операторы. М. : Наука, 1969. 528 с.

Краткое содержание (на английском языке): 
Полный текст в формате PDF: