В настоящей статье изучается приближение полиномами Виленкина в весовых пространствах Lp. Авторы доказывают результат типа Бутцера–Шерера об эквиалентности между порядком наилучшего приближения функции f и порядком возрастания обобщенных производных, а также аппроксимативными свойствами полинома наилучшего приближения tn(f). Даны некоторые приложения к приближению линейными средними рядов Фурье–Виленкина.
Прямая теорема приближения алгебраическими многочленами доказана для интегралов Римана–Лиувилля порядка r>0. Как следствие, получены асимптотические равенства для ε-энтропии образа класса типа Гельдера при действии оператора интегрирования Римана–Лиувилля порядка r>0.