Механика

ПРОСТРАНСТВЕННАЯ ЗАДАЧА МАТЕМАТИЧЕСКОЙ ТЕОРИИ ПЛАСТИЧНОСТИ (КИНЕМАТИЧЕСКИЕ СООТНОШЕНИЯ, ОПРЕДЕЛЯЮЩИЕ ТЕЧЕНИЕ НА ГРАНИ И РЕБРЕ ПРИЗМЫ КУЛОНА – ТРЕСКА)

В работе приводится вывод правильно определенной системы уравнений, описывающей кинематику пространственного идеально пластического течения на ребре призмы Кулона – Треска, и дано исследование основных кинематических уравнений (включая пространственные соотношения Коши и уравнения совместности для приращений деформаций) с помощью триортогональной изостатической системы координат. Устанавливаются правильная определенность и гиперболичность системы уравнений для приращений перемещений и находятся ее характеристические направления.

АСИМПТОТИЧЕСКИЕ МЕТОДЫ В ДИНАМИКЕ ОБОЛОЧЕК ПРИ УДАРНЫХ ВОЗДЕЙСТВИЯХ

В работе описаны асимптотические методы, разработанные для построения математической модели нестационарных волновых процессов в оболочках вращения при ударных торцевых воздействиях, а также предназначенные для решения краевых задач для компонент напряженно-деформированного состояния (НДС) с различными показателями изменяемости и динамичности. Приведена классификация асимптотических приближений.