Cite this article as:
Barulina M. A. Application of Generalized Differential Quadrature Method to Two-dimensional Problems of Mechanics. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2018, vol. 18, iss. 2, pp. 206-216. DOI: https://doi.org/10.18500/1816-9791-2018-18-2-206-216
Application of Generalized Differential Quadrature Method to Two-dimensional Problems of Mechanics
1. Bellman R. E., Kashef B. G., Casti J. Differential quadrature: A technique for the rapidsolution of nonlinear partial differential equations. J. Comput. Phys., 1972, vol. 10, iss. 1, pp. 40–52. DOI: https://doi.org/10.1016/0021-9991(72)90089-7
2. Verzhbitsk ii V. M. Chislennye metody (matematicheskiy analiz i obyknovennye differencialnye uravneniya) [Numerical Methods (Mathematical Analysis and Ordinary Differential Equations)]. Moscow, Direkt-Media, 2013. 400 p. (in Russian).
3. Shu C. Differential Quadrature and Its Application in Engineering. London, Springer-Verlag, 2000. 340 p. DOI: https://doi.org/10.1007/978-1-4471-0407-0
4. Wu T. Y., Liu G. R. Application of the generalized differential quadrature rule to eighth- order differential equations. Communications in Numerical Methods in Engineering, 2001, no. 17, pp. 355–364. DOI: https://doi.org/10.1002/cnm.412
5. Golfam B., Rezaie F. A new generalized approach for implementing any homogeneous and non-homogeneous boundary conditions in the generalized differential quadrature analysis of beams. Scientia Iranica, 2013, vol. 20, iss. 4, pp. 1114–1123.
6. Mansell G., Merryfield W., Shizgal B., Weinert U. A comparison of differential quadrature methods for the solution of partial-differential equations. Computer Methods in Applied Mechanics and Engineering, 1993, vol. 104, iss. 3, pp. 295–316. DOI: https://doi.org/10.1016/0045-7825(93)90028-V
7. Love A. E. H. A Treatise on the Mathematical Theory of Elasticity. Cambridge Univ. Press, 2013. 662 p. (Russ. ed: Moscow ; Leningrad, ONTI, 1935. 674 p.)
8. Parlett B. N. The Symmetric Eigenvalue Problem (Classics in Applied Mathematics). Philadelphia, SIAM, 1987. 416 p. (Russ. ed: Moscow, Mir, 1983. 384 p.)
9. Wilkinson J. H., Reinsch C. Handbook for Automatic Computation: Vol. II: Linear Algebra. Berlin, Heidelberg, Springer-Verlag, 1971. 441 p. DOI: https://doi.org/10.1007/978-3-642-86940-2
10. Leissa A. W. The free vibration of rectangular plates. J. Sound and Vibration, 1973, vol. 31, iss. 3, pp. 257–293. DOI: https://doi.org/10.1016/S0022-460X(73)80371-2