Cite this article as:

Tikhonov I. V., Sherstyukov V. B., Petrosova M. A. Bernstein Polynomials for a Standard Module Function on the Symmetric Interval. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2016, vol. 16, iss. 4, pp. 425-435. DOI: https://doi.org/10.18500/1816-9791-2016-16-4-425-435


Language: 
Russian
Heading: 
UDC: 
517.518.82

Bernstein Polynomials for a Standard Module Function on the Symmetric Interval

Abstract: 

Bernstein polynomials are studied on a symmetric interval. Basic relations connected with Bernstein polynomials for a standard module function are received. By the Templ’s formula we establish recurrence relations from which the Popoviciu’s expansion is derived. Suitable formulas for the first and second derivatives are found. As a result an explicit algebraic form for Bernstein polynomials is obtained. We also notice some corollaries. 

References

1. Lorentz G. G. Bernstein Polynomials. New York, Chelsea Publ. Comp., 1986. xi+134 p.

2. Videnskii V. S. Mnogochleny Bernshteina [Bernstein Polynomials]. Posobie k spetskursu. Leningrad, LGPI, 1990. 64 p. (in Russian).

3. Natanson I. P. Konstruktivnaya teoriya funkcii [Constructive theory of functions]. Moscow, Leningrad, GITTL, 1949, 688 p. (in Russian).

4. Davis P. J. Interpolation and Approximation. New York, Dover, 1975, xvi+394 p.

5. DeVore R. A., Lorentz G. G. Constructive Approximation. Berlin, Heidelberg, New York, Springer– Verlag, 1993, x+450 p.

6. Tikhonov I. V., Sherstyukov V. B. Priblizhenie modulya polinomami Bernshteina [The module function approximation by Bernstein polynomials]. Vestnik ChelGU. Matematika. Mekhanika. Informatika, 2012, vol. 15, no. 26, pp. 6–40 (in Russian).

7. Tikhonov I. V., Sherstyukov V. B., Petrosova M. A. Polynomy Bernshteina: staroe i novoe [Bernstein Polynomials: the old and the new]. Matematicheskii forum. Issledovaniya po matematicheskomu analizu [Math Forum. Research on mathematical analysis]. Vladikavkaz, Publ. VNTs RAN, 2014, vol. 8, pt. 1, pp. 126–175 (in Russian).

8. Tikhonov I. V., Sherstyukov V. B., Petrosova M. A. Sluchai simmetrichnogo otrezka v teorii klassicheskikh polinomov Bernshteina [Symmetric interval case in the theory of classical Bernstein polynomials]. Sistemy komp’iuternoi matematiki i ikh prilozheniia : materialy XV mezhdunarod. nauch. konf. [Systems of computer mathematics and their applications : Proc. XV Intern. Sci. Conf.]. Smolensk, SmolGU, 2014, iss. 15. pp. 184–186 (in Russian).

9. Tikhonov I. V., Sherstyukov V. B., Petrosova M. A. Gluing rule for Bernstein polynomials on the symmetric interval. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2015, vol. 15, iss. 3, pp. 288–300 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2015-15-3-288-300.

10. Popoviciu T. Sur l’approximation des fonctions convexes d’ordre superieur. Mathematica (Cluj), 1935, vol. 10, pp. 49–54.

11. Lebesgue A. Sur l’approximation des fonctions. Bulletin des Sciences Mathematiques, 1898, vol. 22, premiere partie, pp. 278–287.

12. Landau E. Uber die Approximation einer stetigen Funktion durch eine ganze rationale Funktion. Rendiconti del Circolo Matematico di Palermo, 1908, vol. 25, pp. 337–345.

13. De la Vallee Poussin Ch. On the approximation of  functions of a real variable and on quasi-analytic functions. A course of three lectures delivered at the Rice Institute, December 16, 17 and 19, 1924. The Rice Institute Pamphlet, 1925, vol. 12, no. 2, pp. 105–172.

14. Goncharov V. L. Teoriya interpolirovaniya i priblizheniya funkcii [Theory of interpolation and approximation of functions]. Moscow, Leningrad, GITTL, 1954, 328 p. (in Russian).

15. Prudnikov A. P., Brychkov Ju. A., Marichev O. I. Integraly i ryady. Elementarnye funkcii [Integrals and series. Elementary functions]. Moscow, Nauka, 1981, 800 p. (in Russian).

16. Petrosova M. A. O skorosti rosta maksimal’nykh koefficientov v polinomakh Bernshteina, vzyatykh ot simmetrichnogo modulya na simmetrichnom otrezke [On the maximum rate growth of coefficients in Bernstein polynomials which are taken from the simmetric module on a symmetric interval]. Sovremennye problemy teorii funktsii i ikh prilozheniia : materialy 18-i mezhdunar. Sarat. zimnei shkoly [Contemporary Problems of Function Theory and Their Applications : Proc. 18th Intern. Saratov Winter School]. Saratov, Nauchnaya kniga, 2016, pp. 209–211 (in Russian).

17. Stafney J. D. A permissible restriction on the coefficients in uniform polynomial approximation to C[0, 1]. Duke Math. J., 1967, vol. 34, no. 3, pp. 393–396. DOI: https://doi.org/10.1215/S0012-7094-67-03443-6.

18. Roulier J. A. Permissible bounds on the coefficients of approximating polynomials. J. Approx. Theory, 1970, vol. 3, no. 2, pp. 117–122. DOI: https://doi.org/10.1016/0021-9045(70)90018-3.

19. Gurarii V. I., Meletidi M. A. On estimates of the coefficients of polynomials approximating continuous functions. Funct. Anal. Appl. 1971, vol. 5, iss. 1, pp. 60–62. DOI: https://doi.org/10.1007/BF01075850.

Full text:
328