Cite this article as:
Chelnokov Y. N. Dual Matrix and Biquaternion Methods of Solving Direct and Inverse Kinematics Problems of Manipulators, for Example Stanford Robot Arm. I. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 4, pp. 82-89. DOI: https://doi.org/10.18500/1816-9791-2013-13-4-82-89
Dual Matrix and Biquaternion Methods of Solving Direct and Inverse Kinematics Problems of Manipulators, for Example Stanford Robot Arm. I
The methology of solving the direct kinematics problem of manipulators by using screw mechanics methods (dual direction cosine matrices, Clifford biquaternions) is shown on the example of Stanford robot arm. Kinematic equations of motion of the manipulator
are found. These equations will be used for solving the inverce kinematics problem with the help of biquaternion theory of kinematic control.
1. Fu K. S., Gonzalez R. C., Lee C. S. G. Robotics : Control, Sensing, Vision and Intelligence. McGraw-Hill,Inc, 1987, 580 p.
2. Chelnokov Yu. N. Kvaternionnye i bikvaternionnye modeli i metody mehaniki tverdogo tela i ih prilozhenija. Geometrija dvizhenija [Quaternion and Biquaternion Models and Methods of Mechanics of a Rigid Body and their Applications. Geometry of Motion]. Saratov, Izd-vo
Saratov. Univ., 2006, 236 p. (in Russian).
3. Chelnokov Yu. N. Kvaternionnye i bikvaternionnye modeli i metody mehaniki tverdogo tela i ih prilozhenija. Geometrija i kinematika dvizhenija [Quaternion and Biquaternion Models and Methods of Mechanics of a Rigid Body and their Applications. Geometry and Kinematics of Motion] Moscow, Fizmatlit, 2006, 512 p.
(in Russian).
4. Chelnokov Yu. N. Biquaternion Solution of the Kinematic Control Problem for the Motion of a Rigid Body and Its Application to the Solution of Inverse Problems of Robot-Manipulator Kinematics. Mechanics of Solids [Izv. RAN. Mehanika tverdogo tela], 2013, vol. 48, no. 1. pp. 31–46.