робот-манипулятор

Dual matrix and biquaternion methods of solving direct and inverse kinematics problems of manipulators for example Stanford robot arm. II

The methology of solving the inverce kinematics problem of manipulators by using biquaternion theory of kinematics control is shown on the example of Stanford robot arm. Solving of the inverce kinematics problem of Stanford robot arm is performed using the simplest control law. The analysis of numerical solution results is made. The efficacy of applying the theory of kinematics control for solving the inverce kinematics problem of manipulators is proved.

Dual Matrix and Biquaternion Methods of Solving Direct and Inverse Kinematics Problems of Manipulators, for Example Stanford Robot Arm. I

The methology of solving the direct kinematics problem of manipulators by using screw mechanics methods (dual direction cosine matrices, Clifford biquaternions) is shown on the example of Stanford robot arm. Kinematic equations of motion of the manipulator

are found. These equations will be used for solving the inverce kinematics problem with the help of biquaternion theory of kinematic control.