Cite this article as:

Donnik A. M., Ivanov D. V., Kireev S. I., Kossovich L. Y., Ostrovsky N. V., Norkin I. A., Levchenko K. K., Likhachev S. V. Extracting Clinically Relevant Data from Biomechanical Modeling of Surgical Treatment Options for Spinal Injury in Damaged Vertebrae Th10, Th11. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2019, vol. 19, iss. 4, pp. 439-453. DOI: https://doi.org/10.18500/1816-9791-2019-19-4-439-453


Published online: 
02.12.2019
Language: 
Russian
Heading: 
UDC: 
539.3:617.547

Extracting Clinically Relevant Data from Biomechanical Modeling of Surgical Treatment Options for Spinal Injury in Damaged Vertebrae Th10, Th11

Abstract: 

Two three-dimensional geometric solid-state models of the Th7-L1 spinal segment (Model 1, Model 2) with metal construction were built. Models include the vertebrae Th7, Th8, Th9, Th10, Th11, Th12, L1, intervertebral discs, facet joints and ligaments, and metal construction elements. In Model 1, the cortical and spongy layers are constructed by three-dimensional solids, facet joints and intervertebral discs by three-dimensional bodies, ligaments by one-dimensional objects. In Model 2, the spongy layer of bone tissue is built with a three-dimensional solid body, the cortical layer with a shell 1 mm thick, the facet joints and intervertebral discs with three-dimensional bodies, and the ligaments with one-dimensional ones. Bodies are accepted linear, isotropic, homogeneous. The mechanical properties of all biological tissues and metal are set on the basis of published data. The problem of the statics of an elastic body is solved. The fields of complete displacements and Mises equivalent stresses are obtained for each point of the constructed models under characteristic loads. The analysis of the field of equivalent stresses makes it possible to identify areas of the spine that are most susceptible to destruction. The analysis of the field of full displacements makes it possible to evaluate the stability and reliability of fixation under standard physiological loads.

References

1. Shulga A. E., Ninel’ V. G., Norkin I. A., Puchin’yan D. M., Zaretskov V. V., Korshunova G. A., Ostrovskii V. V., Smolkin A. A. Contemporary views on the pathogenesis of trauma to the spinal cord and peripheral nerve trunks. Neuroscience and Behavioral Physiology, 2015, vol. 45, no. 7, pp. 811–819. DOI: https://doi.org/10.1007/s11055-015- 0148-y
2. Zaretskov V. V., Arseniyevich V. B., Likhachev S. V., Shulga A. E., Stepukhovich S. V., Bogomolova N. V. Injury to the Transient Thoracolumbar Spine. Pediatric Traumatology, Orthopedics and Reconstructive Surgery, 2015, vol. 4, no. 2, pp. 61–66 (in Russia).
3. Kuchumov A. G. Biomekhanicheskoe modelirovanie fiksatorov iz splavov s pamiat’iu formy, primeniayuschikhsia v cheliustno-litsevoi khirurgii [Biomechanical modeling of ?xators made of shape memory alloys used in maxillofacial surgery]. Diss. Cand. Sci. (Phys. and Math.). Saratov, 2009. 112 p. (in Russian).
4. Tverier V. M., Simanovskaya E. Y., Nyashin Y. I., Kichenko A. A. Biomechanical Examination of Development and Functionig of the Human Dentofacial System. Russian Journal of biomechanics, 2007, vol. 11, no. 4, pp. 84–104 (in Russian).
5. Markin V. A. Diagnosticheskie i prognosticheskie resursy sovremennykh metodov klinicheskoi i biomekhanicheskoi otsenki vnutrikostnykh dental’nykh implantatov [Diagnostic and prognostic resources of modern methods of clinical and biomechanical assessment of intraosseous dental implants]. Diss. Doc. Sci. (Med.). Moscow, 2006. 205 p. (in Russia).
6. Tver’ye V. M. Biomechanical modeling of ontogenesis of human dentition. The XI AllRussian Congress on Fundamental Problems of Theoretical and Applied Mechanics (Kazan, August 20–24, 2015). Collection of Reports. Kazan, 2015, pp. 3686–3688 (in Russia).
7. Tver’ye V. M., Nyashin Yu. I., Nikitin V. N. Biomechanical modeling of the formation and development of the dentition of the person. In: XVII Zimniaya shkola po mekhanike sploshnykh sred [XVII Winter School on Continuum Mechanics. Abstracts]. Perm, 2011, p. 309 (in Russian).
8. Nikitin V. N. Biomekhanicheskoe modelirovanie korrektsii prikusa zubocheliustnoi sistemy cheloveka [Biomechanical modeling of bit correction of human dental system]. Diss. Cand. Sci. (Phys. and Math.). Perm, 2017. 161 p. (in Russian).
9. Kudyashev A. L., Hominets V. V., Teremshonok A. V., Korostelev K. E., Nagornyy E. B., Dol A. V., Ivanov D. V., Kirillova I. V., Kossovich L. Yu. Biomechanical background for the formation of proximal transition kyphosis after the transpedicular fixation of the lumbar spine. Russian Journal of Biomechanics, 2017, vol. 21, no. 3, pp. 313–323 (in Russia). DOI: https://doi.org/10.15593/RZhBiomeh/2017.3.07
10. Gavryushin S. S., Kuzmichev V. A., Gribov D. A. Biomechanical modeling of surgical treatment of funnel chest deformity. Russian Journal of biomechanics, 2014, vol. 18, no. 1 (63), pp. 36–47 (in Russian).
11. Likhachev S. V., Zaretskov V. V., Arsenievich V. B., Shchanitsyn I. N., Shulga A. E., Zaretskov V. V., Ivanov D. V. Optimization of transpedicular spondylosynthesis application for type A3 lesions of the thoracolumbar transition: Clinical experimental study. Saratov Journal of Medical Scientific Research, 2019, vol. 15, no. 2, pp. 275–283. (in Russian).
12. Rohlmann A., Zander T., Rao M., Bergmann G. Applying a follower load delivers realistic results for simulating standing. Journal of Biomechanics, 2009, vol. 42, iss. 10, pp. 1520– 1526. DOI: https://doi.org/10.1016/j.jbiomech.2009.03.048
13. Du C- F., Yang N., Guo J- C., Huang Y- P., Zhang C. Biomechanical response of lumbar facet joints under follower preload: A finite element study. BMC Musculoskelet Disord, 2016, vol. 17, iss. 1, art. 980. DOI: https://doi.org/10.1186/s12891-016-0980-4
14. Shirazi-Adl A., Ahmed A., Shrivastava S. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. Journal of Biomechanics, 1986, vol. 19, no. 4, pp. 331–350. DOI: https://doi.org/10.1016/0021-9290(86)90009-6
15. Sharabi M., Levi-Sasson A., Wolfson R., Wade K. R., Galbusera F., Benayahu D., Wilke H.- J., Haj-Ali R. The Mechanical Role of the Radial Fiber Network Within the Annulus Fibrosus of the Lumbar Intervertebral Disc: A Finite Elements Study. Journal of Biomechanical Engineering, 2019, vol. 141, iss. 2, art. 021006. DOI: https://doi.org/10.1115/1.4041769
16. Totoribe K., Tajima N., Chosa E. A biomechanical study of posterolateral lumbar fusion using a three-dimensional nonlinear finite element method. Journal of Orthopaedic Science, 1999, vol. 4, no. 2, pp. 115–126.
17. Wu H.-C., Yao R.-F. Mechanical behavior of the human annulus fibrosus. Journal of Biomechanics, 1976, vol. 9, no. 1, pp. 1–7. DOI: https://doi.org/10.1016/0021- 9290(76)90132-9
18. Rohlmann A., Zander T., Rao M., Bergmann G. Applying a follower load delivers realistic results for simulating standing. Journal of Biomechanics, 2009, vol. 42, iss. 10, pp. 1520– 1526. DOI: https://doi.org/10.1016/j.jbiomech.2009.03.048
19. Goel V. K., Kong W., Han J. S., Weinstein J. N., Gilbertson L. G. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine, 1993, vol. 18, no. 11, pp. 1531–1536.
20. Moramarco V., del Palomar A. P., Pappalettere C., Doblary M. An accurate validation of a computational model of a human lumbosacral segment. Journal of Biomechanics, 2010, vol. 43, no. 2, pp. 334–342. DOI: https://doi.org/10.1016/j.jbiomech.2009.07.042
21. Chen C.-S., Cheng C.-K., Liu C.-L., Lo W.-H.Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Medical Engineering & Physics, 2001, vol. 23, iss. 7, pp. 483–491. DOI: https://doi.org/10.1016/S1350-4533(01)00076-5
22. Chazal J., Tanguy A., Bourges M., Gaurel G., Escande G., Guillot M. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. Journal of Biomechanics, 1985, vol. 18, no. 3, pp. 167–176. DOI: https://doi.org/10.1016/0021-9290(85)90202-7
23. Donnik A. M., Kirillova I. V., Kossovich L. Yu., Levchenko K. K., Likhachev S. V. The possibility of using biomechanical modeling at the stage of preoperative planning for spinal injuries. In: Aktual’nye problemy prikladnoi matematiki, informatiki i mekhaniki [Relevant Problems of Applied Mathematics, Informatics and Mechanics : Selected Papers of Intern. Sci. Conf.]. Voronezh, 2019, pp. 218–223 (in Russian).
24. Dol A. V., Dol E. S., Ivanov D. V. Biomechanical modeling of surgical reconstructive treatment of spinal spondylolisthesis at L4–L5 level. Russian Journal of biomechanics, 2018, vol. 22, no. 1, pp. 31–44 (in Russian). DOI: https://doi.org/10.15593/RZhBiomeh/2018.1.00
25. Kiapour A., Ambati D., Hoy R. W., Goel V. Effect of graded facetectomy on biomechanics of Dynesis dynamic stabilization system. Spine, 2012, vol. 37, iss. 10, pp. E581–E589. DOI: https://doi.org/10.1097/BRS.0b013e3182463775
26. Goel V., Kim K., Young E., Lim T. H., Weinstein J. N. An analytical investigation of the mechanics of spinal instrumentation. Spine, 1998, vol. 13, iss. 9, pp. 1003–1011. DOI: https://doi.org/10.1097/00007632-198809000-00007
27. Lee K. K., Teo E. C., Fuss F. K., Vanneuville V., Qiu T. X., Ng H. W., Yang K., Sabitzer R. J. Finite-element analysis for lumbar interbody fusion under axial loading. IEEE Transactions on Biomedical Engineering, 2004, vol. 51, no. 3, pp. 393–400. DOI: https://doi.org/10.1109/TBME.2003.820994
28. Nolte L. P., Panjabi M. M., Oxland T. R. Biomechanical properties of lumbar spinal ligaments. In: Heimke G., Soltesz U., Lee A. J. C. (eds.). Clinical Implant Materials. Advancesin Biomaterials, vol. 9. Heidelberg, Germany, Elsevier, 1990, pp. 663–668.
29. Donnik A. M., Kirillova I. V., Kossovich L. Yu., Zaretskov V. V., Lykhachev S. V., Norkin I. A. Biomechanical modeling of reconstructive intervention on the thoracolumbar transition. AIP Conference Proceedings, 2018, vol. 1959, iss. 1, art. 090002. DOI: https://doi.org/10.1063/1.50347412018
30. Lee S. H., Im Y. J., Kim K. T., Kim Y. H., Park W. M., Kim K. Comparison of cervical spine biomechanics after fixed-and mobile-core artificial disc replacement: A finite element analysis. Spine, 2011, vol. 36, iss. 9, pp. 700–708. DOI: https://doi.org/10.1097/BRS.0b013e3181f5cb87
31. Dong L., Li G., Mao H., Marek S., Yang K. H. Development and validation of a 10-year-old child ligamentous cervical spine finite element model. Annals of Biomedical Engineering, 2013, vol. 41, iss. 2, pp. 2538–2552. DOI: https://doi.org/10.1007/s10439-013-0858-7
32. Zahari S. N., Latif M. J. A., Rahim N. R. A., Kadir M. R. A., Kamarul T. The effects of physiological biomechanical loading on intradiscal pressure and annulus stress in lumbar spine: A finite element analysis. Journal of Healthcare Engineering, 2017, vol. 2017, art. 9618940. DOI: https://doi.org/10.1155/2017/9618940
33. Kim Y. H., Khuyagbaatar B., Kim K. Recent advances in finite element modeling of the human cervical spine. Journal of Mechanical Science and Technology, 2018, vol. 32, iss. 1, pp. 1–10. DOI: https://doi.org/10.1007/s12206-017-1201-2
34. Nedoma J., Stehlik J., Hlavacek I., Danek J., Dostalova T., Preckova P. Mathematical and computational methods and algorithms in biomechanics of human skeletal systems: An introduction. John Wiley & Sons, 2011. 300 p. DOI: https://doi.org/10.1002/9781118006474
35. Baykov E. S. Prognozirovanie rezul’tatov khirurgicheskogo lecheniya gryzh poiasnichnykh mezhpozvonkovukh diskov [Prediction of the results of surgical treatment of hernias of the lumbar intervertebral]. Diss. Cand. Sci. (Med.). Novosibirsk, 2014. 135 p. (in Russian)

Full text: