Cite this article as:

Gerus . A., Gritsenko S. . Homogenization of the Acoustics Mathematical Model. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2015, vol. 15, iss. 3, pp. 264-272. DOI: https://doi.org/10.18500/1816-9791-2015-15-3-264-272


Language: 
Russian
Heading: 
UDC: 
517.958

Homogenization of the Acoustics Mathematical Model

Abstract: 

We consider a mathematical model of acoustics in heterogeneous medium with two different components with the common boundary. One of these is a bounded liquid domain and the other is a poroelastic medium. Poroelastic medium is perforated by pores. A pore space is filled with a viscous liquid. The motion of the liquid and the joint motion of the poroelastic media with porous space are governed by the differential equations based on the continuum mechanics laws. These equations contain rapidly oscillating terms, depending on the small parameter. The small parameter is the ratio of the average pores size to the size of domain under consideration. Rapidly oscillating terms prevent from the numerical simulations. The unique existence of the generalized solution of the boundary-value problem is proved. Homogenized equations (i.e. free from rapidly oscillating terms) are based upon the Nguetseng method of the two-scale convergence. We derived approximate models useful to the numerical calculations.

References
  1. Герус А. А., Гриценко С. А. Модель акустики в конфигурации упругое тело – пороупругая среда// Научные ведомости БелГУ. Сер. Математика. Физика. 2014. № 25 (196), вып. 37. С. 68–75.
  2. Мейрманов А. М. Метод двухмасштабной сходимости Нгуетсенга в задачах фильтрации и сейсмоакустики в упругих пористых средах // Сиб. матем. журн. 2007. Т. 48, № 3. С. 645–667.
  3. Мейрманов А. М. Уравнения акустики в упругих пористых средах // Сиб. журн. индустр. матем. 2010. Т. XIII, № 2. С. 98–110.
  4. Мейрманов А. М. Вывод уравнений неизотермической акустики в упругих пористых средах // Сиб. матем. журн. 2010. Т. 51, № 1. С. 156–174.
  5. Lukkassen D., Nguetseng G., Wall P. Two-scale convergence // Intern. J. Pure and Appl. Math. 2002. Vol. 2, № 1. P. 35–86.
  6. Conca C. On the application of the homogenization theory to a class of problems arising in fluid mechanics // Math. Pures et Appl. 1985. Vol. 64. P. 31–75.

 

Full text:
133