Cite this article as:
Халиуллина А. Р. Конгруэнции полигонов над группами. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 4, pp. 133-137. DOI: https://doi.org/10.18500/1816-9791-2013-13-4-133-137
Language:
Russian
Heading:
UDC:
УДК 512.579
Конгруэнции полигонов над группами
Abstract:
Получено полное описание конгруэнций полигонов над группами.
Key words:
References
1. Kudriavtsev V. B., Podkolzin A. S., Ushchumlich Sh. Vvedenie v teoriiu abstraktnykh avtomatov [Introdunction in abstract automata theory]. Moscow, MGU, 1985, 176 p. (in Russian).
2. Lallement G. Semigroups and combinatorial applications. New York, Wiley, 1979, 376 p.
3. Avdeev A. Yu., Kozhuhov I. B. Acts over completely 0-simple semigroups. Acta Cybernet, 2000, vol. 14, no. 4. pp. 523–531.
4. Ohemke R. H. Congruences and semisiplicity for Rees matrix semigroups. Pacif. J. Math., 1974, vol. 54, no. 2. pp. 143–164.
5. Kilp M., Knauer U., Mikhalev A. V. Monoids, acts and cathegories. Berlin, New York, 2000. 529 p.
6. Maksimovskii M. Yu. Bipolygons and multipolygons over semigroups. Math. Notes, 2010, vol. 87, no. 5–6,pp. 834–843.
7. Kurosh A. G. Teoriia grupp [Group theory]. Moscow, Nauka, 1967, 648 p. (in Russian).
Short text (in English):
47
Full text:
67