Cite this article as:

Volosivets S. S., Zaitsev N. N. Martingale Inequalities in Symmetric Spaces with Semimultiplicative Weight. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2019, vol. 19, iss. 2, pp. 126-133. DOI: https://doi.org/10.18500/1816-9791-2019-19-2-126-133


Published online: 
28.05.2019
Language: 
Russian
Heading: 
UDC: 
519.216.8

Martingale Inequalities in Symmetric Spaces with Semimultiplicative Weight

Abstract: 

Let (Ω,Σ,P) be a complete probability space, F = {F n } ∞ n=0 be an increasing sequence of σ- algebras such that ∪ ∞ n=0 F n generates Σ. If f = {f n } ∞ n=0 is a martingale with respect to F and E n is the conditional expectation with respect to F n , then one can introduce a maximal function M(f) = sup n>0 |f n | and a square function S(f) =?∞P i=0|f i − f i−1 | 2 ¶ 1/2 , f −1 = 0. In the case of uniformly integrable martingales there exists g ∈ L 1 (Ω) such that E n g = f n and we consider a sharp maximal function f ♯ = sup n>0 E n |g − f n−1 |. The result of Burkholder–Davis–Gundy is that C 1 kM(f)k p 6 kS(f)k p 6 C 2 kM(f)k for 1 < p < ∞, where k · k p is the norm in L p (Ω) and C 2 > C 1 > 0. We call the inequality of type kM(f)k p 6 Ckf ♯ k p , 1 < p < ∞ Fefferman–Stein inequality. It is known that Burkholder–Davis–Gundy martingale inequality is valid in rearrangement invariant Banach function spaces with non-trivial Boyd indices. We prove this inequality in a more wide class of symmetric spaces (the last notion is defined as in the famous monograph by S. G. Krein, Yu. I. Petunin and  E.M.Semenov) with semimultiplicative weight. Also,the Fefferman–Steinty peine qualitie sofs harp maximal function and sharp square functions are obtained in this class of symmetric spaces.

References

1. Burkholder D. Distribution function inequalities for martingales. Ann. of Probab., 1973, vol. 1, no. 1, pp. 19–42. DOI: https:/doi.org/10.1214/aop/1176997023
2. Burkholder D., Davis B. J., Gundy R. F. Integral inequalities for convex functions of operators on martingales. Proc. Sixth Berkeley Symp. on Math. Statist. and Prob. Univ. of Calif. Press, 1972. Vol. 2, pp. 223–240.
3. Johnson W., Schechtman G. Martingale inequalities in rearrangement invariant function space. Israel J. Math., 1988, vol. 64, no. 3, pp. 267–275. DOI: https://doi.org/10.1007/BF02882423
4. Novikov I. Ya. Martingale inequalities in rearrangement invariant spaces. Siberian Math. J., 1993, vol. 34, no. 1, pp. 99–105. DOI: https://doi.org/10.1007/BF00971245
5. Krein S. G., Petunin Yu. I., Semenov E. M. Interpolation of linear operators. Providence, RI, Amer. Math. Soc., 1982. 375 p. (Russ. ed.: Moscow, Nauka, 1978. 400 p.).
6. Kikuchi M. Averaging Operators and Martingale Inequalities in Rearrangement Invariant Function Spaces. Canad. Math. Bull., 1999, vol. 42, iss. 3, pp. 321–334. DOI: https://doi.org/10.4153/CMB-1999-038-7
7. Fefferman C., Stein E. H p spaces of several variables. Acta. Math., 1972, vol. 129, pp. 137–193. DOI: https://doi.org/10.1007/BF02392215
8. Garsia A. M. Martingale inequalities. New York, Benjamin Inc., 1973. 184 p.
9. Weisz F. Martingale Hardy spaces and their Applications in Fourier Analysis. Lecture Notes in Maths. Vol. 1568. Berlin, Springer-Verlag, 1994. 220 p. DOI: https://doi.org/10.1007/BFb0073448
10. Long R. L. Rearrangement techniques in martingale setting. Illinois J. Math., 1991, vol. 35, no. 3, pp. 506–521.
11. Ren Y. A note on some inequalities of martingale sharp functions. Math. Inequal. Appl., 2013, vol. 16, no. 1, pp. 153–157. DOI: https://doi.org/10.7153/mia-16-11
12. Ho K. P. Martingale inequalities on rearrangement-invariant quasi-Banach function spaces. Acta Sci. Math. (Szeged), 2017, vol. 83, no. 3–4, pp. 619–627. DOI:
https://doi.org/10.14232/actasm-012-817-9
13. Hardy G. H., Littlewood J. E., Polya G. Inequalities. Cambridge, Cambridge Univ. Press, 1934. 328 p. (Russ. ed.: Мoscow, Izd-vo inostr. lit., 1948. 456 p.)
14. Pavlov E. A. Some properties of Hardy–Littlewood operator. Math. Notes of the Academy of Sciences of the USSR, 1979, vol. 26, iss. 6, pp. 958–960. DOI: https://doi.org/10.1007/BF01142082
15. Bagby R., Kurtz D. A rearranged good λ-inequality. Trans. Amer. Math. Soc., 1986, vol. 293, no. 1, pp. 71–81. DOI: https://doi.org/10.1090/S0002-9947-1986-0814913-7
16. Kikuchi M. On the Davis inequality in Banach function spaces. Math. Nachrichten, 2008, vol. 281, no. 5, pp. 697–709. DOI: https:/doi.org/10.1002/mana.200510635

Short text (in English): 
Full text:
156