1. Griffith A. A. The phenomena of rupture and flow in
solids // Philosophical Transactions of the Royal Society
of London. Ser. A. 1921. Vol. 221. P. 163–198.
2. Cowie J. M. G Polymers : Chemistry and Physics of
Modern Materials. N.Y. : Blackie Academic, 1991. 436 p.
3. Geim A. K. Graphene : status and prospects // Science.
2009. Vol. 324. P. 5934.
4. Jiang J. -W., Wang J. -S., Li B. Young’s modulus
of graphene : a molecular dynamics study // Phys. Rev.
Ser. B. 2009. Vol. 80. P. 113–405.
5. Lee C., Wei X., Kysar J. W, Hone J. Measurement of
the Elastic Properties and Intrinsic Strength of Monolayer
Graphene // Science. 2008. Vol. 321. P. 385.
6. Reddy C. D., Rajendran S., Liew K. M. Equilibrium
configuration and continuum elastic properties of finite
sized graphene // Nanotechnology. 2006. Vol. 17. P. 864–870.
7. Arroyo M., Belytschko T. Finite crystal elasticity of
carbon nanotubes based o n the exponential Cauchy–Born
rule // Phys. Rev. B. 2004. Vol. 69. P. 115415.
8. Brenner D. W. Empirical Potential for Hydrocarbons
for Use in Simulating the Chemical Vapor Deposition
of Diamond Films // Phys. Rev. Ser. B. 1990. Vol. 42.
P. 9458–9471.
9. Brenner D. W., Shenderova O. A., Harrison J. A.,
Stuart S. J., Ni B., Sinnott S. B. A second-generation
reactive empirical bond order (REBO) potential energy
expression for hydrocarbons // J. Phys. : Condens.
Matter. 2002. Vol. 14. P. 783–802.
10. Kudin K. N., Scuseria G. E. and Yakobson B. I. C2F,
BN and C nanoshell elasticity from ab initio computations
// Phys. Rev. Ser. B. 2001. Vol. 64. P. 235406.
11. Shimpi R. P., Patel H. G. A two variable refined plate
theory for orthotropic plate analysis // Intern. J. Solids
and Structures. 2006. Vol. 43, iss. 22–23. P. 6783–6799.
12. Tsiatas G. C., Yiotis A. J. A microstructure-dependent
orthotropic plate model based on a modified couple stress
theory // Recent Developments in Boundary Element
Methods : A Volume to Honour Professor John T.
Katsikadelis / ed. E. J. Sapountzakis. Southampton : WIT
Press, 2010. P. 295–308.
13. Setoodeh A. R., Malekzadeh P., Vosoughi A. R.
Nonlinear free vibration of orthotropic graphene sheets
using nonlocal Mindlin plate theory // Proc. Mech.
Part C : J. Mechanical Engineering Science. 2012.
Vol. 226. P. 1896–1906.
14. Narendar S., Gopalakrishnan S. Scale effects on
buckling analysis of orthotropic nanoplates based on
nonlocal two-variable refined plate theory // Acta Mech.
2012. Vol. 223. P. 395–413.
15. Wang Q. Effective in-plane stiffness and bending
rigidity of armchair and zigzag carbon nanotubes //
Intern. J. Solid Struct. 2004. Vol. 41. P. 5451–5461.
16. Shokrieh M. M., Rafiee R. Prediction of Young’s
modulus of graphene sheets and carbon nanotubes using
nanoscale continuum mechanics approach // Materials
and Design. 2010. Vol. 31. P. 790–795.
17. Глухова О. Е., Терентьев О. А. Теоретическое ис-
следование электронных и механических свойств C-N
однослойных нанотрубок // Физика волновых процес-
сов и радиотехнические системы. 2007. Т. 10, № 4.
С. 85–89.
18. Глухова О. Е. Жесткость Y-образных углерод-
ных нанотрубок при деформации растяжения/сжатия
// Нано- и микросиcтемная техника. 2009. № 1. С. 19–
22.
19. Das S., Seelaboyina R., Verma V., Lahiri I.,
Hwang J. Y., Benerjee R., Choi W. Synthesis and
characterization of self-organized multilayered graphenecarbon
nanotube hybrid films // J. Mater. Chem. 2011.
Vol. 21. P 7289–7295.