Warning message

Node revision 508 not found. Perharps it was deleted.

Cite this article as:

. ., Kirillova I. V., Kossovich E. L., Fadeev A. A. Mechanical properties study for graphene sheets of various size . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2012, vol. 12, iss. 4, pp. 63-66. DOI: https://doi.org/10.18500/1816-9791-2012-12-4-63-66


Language: 
Russian
Heading: 
UDC: 
539.32

Mechanical properties study for graphene sheets of various size

Abstract: 

We studied mechanical properties of large graphene sheets. The Young's modulus was found for each of the considered nanoparticles and sheets. To this end, the deformation was applied in two orthogonal directions – zigzag and armchair directions of the graphene atomic framework. It was established that there exist a size effect on the Young's modulus of graphene. Also, it was found that themechanical properties of graphene become close to isotropic ones when the linear dimensions of the latter are large enough for it to be considered as a macro-particle. Also, under these conditions, the Young's modulus becomes close to 1.1 TPa. 

References
1. Griffith A. A. The phenomena of rupture and flow in
solids // Philosophical Transactions of the Royal Society
of London. Ser. A. 1921. Vol. 221. P. 163–198.
2. Cowie J. M. G Polymers : Chemistry and Physics of
Modern Materials. N.Y. : Blackie Academic, 1991. 436 p.
3. Geim A. K. Graphene : status and prospects // Science.
2009. Vol. 324. P. 5934.
4. Jiang J. -W., Wang J. -S., Li B. Young’s modulus
of graphene : a molecular dynamics study // Phys. Rev.
Ser. B. 2009. Vol. 80. P. 113–405.
5. Lee C., Wei X., Kysar J. W, Hone J. Measurement of
the Elastic Properties and Intrinsic Strength of Monolayer
Graphene // Science. 2008. Vol. 321. P. 385.
6. Reddy C. D., Rajendran S., Liew K. M. Equilibrium
configuration and continuum elastic properties of finite
sized graphene // Nanotechnology. 2006. Vol. 17. P. 864–870.
7. Arroyo M., Belytschko T. Finite crystal elasticity of
carbon nanotubes based o n the exponential Cauchy–Born
rule // Phys. Rev. B. 2004. Vol. 69. P. 115415.
8. Brenner D. W. Empirical Potential for Hydrocarbons
for Use in Simulating the Chemical Vapor Deposition
of Diamond Films // Phys. Rev. Ser. B. 1990. Vol. 42.
P. 9458–9471.
9. Brenner D. W., Shenderova O. A., Harrison J. A.,
Stuart S. J., Ni B., Sinnott S. B. A second-generation
reactive empirical bond order (REBO) potential energy
expression for hydrocarbons // J. Phys. : Condens.
Matter. 2002. Vol. 14. P. 783–802.
10. Kudin K. N., Scuseria G. E. and Yakobson B. I. C2F,
BN and C nanoshell elasticity from ab initio computations
// Phys. Rev. Ser. B. 2001. Vol. 64. P. 235406.
11. Shimpi R. P., Patel H. G. A two variable refined plate
theory for orthotropic plate analysis // Intern. J. Solids
and Structures. 2006. Vol. 43, iss. 22–23. P. 6783–6799.
12. Tsiatas G. C., Yiotis A. J. A microstructure-dependent
orthotropic plate model based on a modified couple stress
theory // Recent Developments in Boundary Element
Methods : A Volume to Honour Professor John T.
Katsikadelis / ed. E. J. Sapountzakis. Southampton : WIT
Press, 2010. P. 295–308.
13. Setoodeh A. R., Malekzadeh P., Vosoughi A. R.
Nonlinear free vibration of orthotropic graphene sheets
using nonlocal Mindlin plate theory // Proc. Mech.
Part C : J. Mechanical Engineering Science. 2012.
Vol. 226. P. 1896–1906.
14. Narendar S., Gopalakrishnan S. Scale effects on
buckling analysis of orthotropic nanoplates based on
nonlocal two-variable refined plate theory // Acta Mech.
2012. Vol. 223. P. 395–413.
15. Wang Q. Effective in-plane stiffness and bending
rigidity of armchair and zigzag carbon nanotubes //
Intern. J. Solid Struct. 2004. Vol. 41. P. 5451–5461.
16. Shokrieh M. M., Rafiee R. Prediction of Young’s
modulus of graphene sheets and carbon nanotubes using
nanoscale continuum mechanics approach // Materials
and Design. 2010. Vol. 31. P. 790–795.
17. Глухова О. Е., Терентьев О. А. Теоретическое ис-
следование электронных и механических свойств C-N
однослойных нанотрубок // Физика волновых процес-
сов и радиотехнические системы. 2007. Т. 10, № 4.
С. 85–89.
18. Глухова О. Е. Жесткость Y-образных углерод-
ных нанотрубок при деформации растяжения/сжатия
// Нано- и микросиcтемная техника. 2009. № 1. С. 19–
22.
19. Das S., Seelaboyina R., Verma V., Lahiri I.,
Hwang J. Y., Benerjee R., Choi W. Synthesis and
characterization of self-organized multilayered graphenecarbon
nanotube hybrid films // J. Mater. Chem. 2011.
Vol. 21. P 7289–7295.
Full text: