orthotropy

Warning message

Node revision 508 not found in node Mechanical properties study for graphene sheets of various size . Perharps it was deleted.

Investigation of Strength and Buckling of Orthotropic Conical Shells and Conical Panels

In the construction, thin-walled shell structures are used to cover the buildings of large areas, such as stadiums, hangars, circuses, airports. In this paper, the strength and buckling of closed conical shells as well as their panels are studied. The geometric nonlinearity and transverse shifts are taken into account. A mathematical model is used in the form of a functional of the total potential energy of deformation. Also expressions for deformations, forces and moments are given. The calculation program is implemented in the MatLab environment.

Explicit Models for Flexural Edge Waves in Thin Orthotropic Plates

Analysis of flexural edge wave propagation in thin plates is presented. Several problems of semi-infinite plates vibrations are solved. These plates are assumed to be orthotropic. Some basic features of flexural edge wave propagation are found using the constructed explicit parabolic-ellipticmodels. They extract the localized wave contribution into the overall solution.

Mechanical properties study for graphene sheets of various size

We studied mechanical properties of large graphene sheets. The Young's modulus was found for each of the considered nanoparticles and sheets. To this end, the deformation was applied in two orthogonal directions – zigzag and armchair directions of the graphene atomic framework. It was established that there exist a size effect on the Young's modulus of graphene.