Cite this article as:

Kosolapov Y. V., Pevnev F. S. A Method of Protected Distribution of Data Among Unreliable and Untrusted Nodes. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2019, vol. 19, iss. 3, pp. 326-337. DOI: https://doi.org/10.18500/1816-9791-2019-19-3-326-337


Published online: 
31.08.2019
Language: 
English
Heading: 
UDC: 
621.391.7

A Method of Protected Distribution of Data Among Unreliable and Untrusted Nodes

Abstract: 

We consider a model of protecting the confidentiality and recoverability of data in a distributed storage system. It is assumed that in- formational blocks are coded into the code blocks. Then the blocks are divided into parts and distributed among repositories of the distributed storage. A modification of the code noising method is con- structed which simultaneously provides computational resistance to coalition attacks on confidentiality of stored data. Moreover, the modification also provides protection from the failure of a part of the storage nodes. Confidentiality protection is provided for coalitions of greater cardinality than in the case of using the classical method of code noising. It is shown that computational resistance is based on the complexity of solving one well-known problem of theoretical coding.

References

1. Subramanian A., McLaughlin S. W. MDS codes on the erasure-erasure wiretap channel. arXiv:0902.3286 [cs.IT], 2009.
2. Korzhik V., Yakovlev V. Nonasymptotic estimates of information protection efficiency for the wire-tap channel concept. In: Seberry J., Zheng Y. (eds.). Advances in Cryptology —AUSCRYPT ’92. AUSCRYPT 1992. Lecture Notes in Computer Science, 1993, vol. 718, pp. 183–195. DOI: https://doi.org/10.1007/3-540-57220-1_61
3. Ozarov L. H., Wyner A. D. Wire-Tap Channel II. In: Beth T., Cot N., Ingemarsson I. (eds.). Advances in Cryptology. EUROCRYPT 1984. Lecture Notes in Computer Science, 1984, vol. 209, pp. 33–55. DOI: https://doi.org/10.1007/3-540-39757-4_5
4. Wei V. K. Generalized Hamming Weights for Linear Codes. IEEE Trans. Inform. Theory, 1991, vol. 37, no. 5, pp. 1412–1418. DOI: https://doi.org/10.1109/18.135655
5. Forney G. D. Dimension/Length Profiles and Trellis Complexity of Linear Block Codes. IEEE Trans. Inform. Theory, 1994, vol. 40, no. 6, pp. 1741–1752. DOI: https://doi.org/10.1109/18.340452
6. Luo Y., Mitrpant C., Hav Vinck A. J., Chen K. Some New characters on the wire-tap channel of type II. IEEE Trans. Inform. Theory, 2005, vol. 51, no. 3, pp. 1222–1229. DOI: https://doi.org/10.1109/TIT.2004.842763
7. Hu P., Sung C. W., Ho S.-W., Chan T. H. Optimal Coding and Allocation for Perfect Secrecy in Multiple Clouds. IEEE Transactions on Information Forensics and Security, 2016, vol. 11, no. 2, pp. 388–399. DOI: https://doi.org/10.1109/TIFS.2015.2500193
8. Kosolapov Yu. V. Codes for a generalized wire-tap channel model. Problems of Information Transmission, 2015, vol. 51, no. 1, pp. 20–24. DOI:
https://doi.org/10.1134/S0032946015010020
9. Kosolapov Yu. V., Pozdnyakov A. V. Evaluation of resistance of code noising in the distributed data storage. Systems and Means of Informatics, 2015, vol. 25, no. 4, pp. 158– 174 (in Russian). DOI: https://doi.org/10.14357/08696527150412
10. Gazaryan Yu. O., Kosolapov Yu. V. On the experimental estimation of the lower bound for the maximum number of messages in a scheme aimed at data protection against spoofing. Computational Technologies, 2015, vol. 20, no. 6, pp. 5–21 (in Russian).
11. Bellare M., Tessaro S., Vardy A. A Cryptographic Treatment of the Wiretap Channel. arXiv:1201.2205 [cs.IT], 2012.

12. Barg S. Some new NP-complete coding problems. Problems of Information Transmission, 1994, vol. 30, no. 3, pp. 209–214.
13. Sendrier N., Simos D. E. The Hardness of Code Equivalence over F q and Its Application to Code-Based Cryptography. In: Gaborit P. (eds.). Post-Quantum Cryptography. PQCrypto 2013. Lecture Notes in Computer Science, 2013, vol. 7932, pp. 203–216.
14. Lenstra A. K., Verheul E. R. Selecting Cryptographic Key Sizes. J. Cryptology, 2001, vol. 14, pp. 255–293. DOI: https://doi.org/10.1007/s00145-001-0009-4

Full text: