Cite this article as:

Dozorov A. A., Manzhosov . . Modeling of the shock system motion with impacts about hard barriers . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 2, pp. 54-60. DOI: https://doi.org/10.18500/1816-9791-2013-13-2-1-54-60


Language: 
Russian
Heading: 

Modeling of the shock system motion with impacts about hard barriers

Abstract: 

Abstract: We have developed a model of a shock system with a resilient member under periodic force action including impacts about hard barriers. In order to model the shock system we have developed a program providing a computational solution for differential equations of a subject motion taking into account conditions of periodicity and collision, graphical and numerical reproduction of motion parameters in the simulation process. We have performed simulation of modes of the shock system. In the process of computational experiments parameters of the system response have been estimated and corrected upon the results. 

References

1. Alimov O. D., Manzhosov V. K., Eremiants V. E. Udar.

Rasprostranenie voln deformacij v udarnyh sistemah

[Shock. Propagation of strain waves in shock systems].

Moscow, Nauka, 1985, 354 p. (in Russian).

2. Alimov O. D., Basov S. A. Gidravlicheskie vibroudar-

nye sistemy [Hydraulic vibroimpact systems]. Moscow,

Nauka, 1990, 352 p. (in Russian).

3. Krupenin V. L. Udarnye i vibroudarnye mashiny i

ustrojstva [Shock and vibroimpact machine and devices].

Vestnik nauchno-tehnicheskogo razvitija, 2009, no. 4

(20), pp. 3–32 (in Russian).

4. Manzhosov V. K., Novikov D. A. Impact system motion

modes simulation at periodic force effect. Izv. Sarat.

Univ. N. S. Ser. Math. Mech. Inform., 2010, vol. 10,

iss. 4, pp. 65–71 (in Russian).

5. Manzhosov V. K., Novikov D. A. Limit cycles of motion

of a shock system in case of relay-type force and shock

action at the moment of force switching. Avtomatizacija

processov upravlenija, 2011, no. 3(25), pp. 14–20 (in

Russian).

10

Short text (in English): 
Full text: