Cite this article as:
Ershov A. V. Obstructions to Embedding of Matrix Algebra Bundles into a Trivial One. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2009, vol. 9, iss. 3, pp. 27-33. DOI: https://doi.org/10.18500/1816-9791-2009-9-3-27-33
Obstructions to Embedding of Matrix Algebra Bundles into a Trivial One
Topological obstructions to embedding of an Mk(C)-bundle into a trivial Mkl(C)-bundle under the condition (k, l) = 1 are studied. The relation of this problem to the theory of bundles with a structure groupoid is described.
1. Пирс Р. Ассоциативные алгебры. М.: Мир, 1986. 543 с.
2. Каруби М. К-теория. Введение. М.: Мир, 1981. 360 с.
3. Peterson F.P. Some remarks on Chern classes // Annals of Math. 1959. V. 69. P. 414–420.
4. Ershov A.V. A generalization of the topological Brauer group // J. of K-theory: K-theory and its Applications to Algebra, Geometry and Topology. 2008. V. 2, Spec. Iss. 03. P. 407–444.
5. Connes A. Noncommutative geometry. N.Y.: Academic Press, 1994. 661 p.
6. Ershov A.V. Topological obstructions to embedding of a matrix algebra bundle into a trivial one // http://arxiv.org/abs/0807.3544.