Cite this article as:

Kartashov V. K., Kartashova A. V. On Conditions for Distributivity or Modularity of Congruence Lattices of Commutative Unary Algebras. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 4, pp. 52-57. DOI: https://doi.org/10.18500/1816-9791-2013-13-4-52-57


Language: 
Russian
Heading: 
UDC: 
512.567.5

On Conditions for Distributivity or Modularity of Congruence Lattices of Commutative Unary Algebras

Abstract: 
The paper is devoted to the problem of describing unary algebras whose congruence lattices have a given property. By now this problem has been solved for algebras with one unary operation. In the paper it is shown that this problem is much more difficult for arbitrary commutative unary algebras. We give some necessary conditions for such lattices to be distributive or modular. Besides, it is proved here that a lattice of all subsets of a set is isomorphic to the congruence lattice of a suitable connected commutative unary algebra.
References
1. Gratzer G., Shmidt E. T. Characterizations of congruence lattices of abstract algebras. Acta Sci. Math., 1963, vol. 24, pp. 34–59.
2. Mal’tsev A. I. Algebraic Systems. Berlin, Springer Verlag, 1976, 392 p. (Rus. ed. : Mal’tsev A. I. Algebraicheskie sistemy. Moscow, Nauka, 1970, 392 p.)
3. Skornjakov L. A. Unars. Coll. Math. Soc. J. Bolyai., 1982. vol. 29. Universal Algebra (Esztergom 1977). pp. 735–743.
4. Skornjakov L. A. Complements in the lattice of congruences. Mathematics of the USSR-Sbornik, 1972. vol. 17, no 1. pp. 148–181. DOI: 10.1070/SM1972v017n 01ABEH001495.
5. Berman J. On the congruence lattices of unary algebras. Proc. Amer. Math. Soc., 1972. vol. 36. no 1. pp. 34–38.
6. Egorova D. P., Skornjakov L. A. O strukture kongrujencij unarnoj algebry [On congruence lattice of a unary algebra]. Uporjadochennye mnozhestva i reshetki [Ordered sets and lattices]. Saratov, Saratov Univ. Press,1977, vol. 4. pp. 28–40 (in Russian).
7. Egorova D. P. Struktura kongrujencij unarnoj algebry [The congruence lattice of a unary algebra]. Uporjadochennye mnozhestva i reshetki [Ordered sets and lattices]. Saratov, Saratov Univ. Press, 1978, vol. 5. pp. 11–44 (in Russian).
8. Johnson J., Seifert R. L. A survey of multi-unary algebras. Mimeographed seminar notes. New York, U. C. Berkeley, 1967, 16 p.
9. Kartashov V. K. Independent systems of generators and the Hopf property for unary algebras. Discrete Mathematics and Applications, 2008, vol. 18, iss. 6, pp. 625—630. DOI: 10.1515/DMA.2008.047.
Short text (in English): 
Full text: