Cite this article as:

Kruss Y. S. On Differential Operator in Compact Zero-dimensional Groups . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2014, vol. 14, iss. 3, pp. 279-287. DOI: https://doi.org/10.18500/1816-9791-2014-14-3-279-287


Language: 
Russian
Heading: 
UDC: 
517.51

On Differential Operator in Compact Zero-dimensional Groups

Abstract: 

We define strong derivative on zero-dimensional compact group and find conditions under which the differential operator does not depend from an orthonormal system that defines this derivative. For multidimensional case we find conditions under which the differential operator does not depend from method of conversion multidimensional group in one-dimensional group. We obtain a clear view of annihilators in a multidimensional compact zero-dimensional group.

References
1. Butzer P. L. Wagner H. J. Walsh – Fourier series and the concept of a derivative. Appl.Anal, 1973, vol. 3. no. 1, pp. 29–46.
2. Golubov B. I. A modified strong dyadic integral and derivative. Sbornik: Mathematics, 2002, vol. 193, no. 4, pp. 507–529. DOI: 10.4213/sm643.
3. Volosivets S. S. A modified P-adic integral and a modified P-adic derivative for functions defined on a halfaxis. Russian Math. [Izvestiya VUZ. Matematika], 2005. vol. 49, no. 6. pp. 25–36.
4. Kozyrev S. V. Wavelet theory as p-adic spectral analysis. Izv. Math., 2002, vol. 66, no. 2, pp. 367–376. DOI: 10.4213/im381.
5. Lukomskii S. F. Haar system on a product of zerodimensional compact group. Centr. Eur. J. Math., 2011, vol. 9, no. 3, pp. 627–639.
6. Lukomskii S. F. Multiresolution analysis on product of zero-dimensional Abelian groups. J. Math. Anal. Appl., 2012, vol. 385, pp. 1162–1178.
7. Lukomskii S. F. Haar series on compact zerodimmesional abelian group. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2009, vol. 9, no. 1, pp. 14–19 (in Russian).
 
Full text: