Cite this article as:
Svetlov A. V. On Spectrum of Schrödinger Operator on Manifold of a Special Type. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2014, vol. 14, iss. 4, pp. 584-589. DOI: https://doi.org/10.18500/1816-9791-2014-14-4-584-589
Language:
Russian
Heading:
UDC:
517.95
On Spectrum of Schrödinger Operator on Manifold of a Special Type
Abstract:
The main subject of the paper is spectrum of the Schrödinger operator on weighted quasimodel manifold with an end, which is warped product of a special type. We prove the criterion of discreteness for the spectrum of the operator in terms of metric coefficients and potential of the operator. As the conclusion we made some remarks on the corollaries of the proved theorem and on its extension to more complex quasimodel manifolds.
Key words:
References
- Pinsky M. The spectrum of the Laplacian on a manifold of negative curvature I // J. Diff. Geom. 1978. Vol. 13. P. 87–91.
- Baider A. Noncompact Riemannian manifolds with discrete spectra // J. Diff. Geom. 1979. Vol. 14. P. 41–57.
- Brooks R. A relation between growth and the spectrum of the Laplacian // Math. Z. 1981. Vol. 178. P. 501–508. DOI: 10.1007/BF01174771
- Светлов А. В. Критерий дискретности спектра оператора Лапласа – Бельтрами на квазимодельных многообразиях // Сиб. матем. журн. 2002. Т. 43, № 6. С. 1362–1371.
- Harmer M. Discreteness of the spectrum of the Laplacian and stochastic incompleteness // J. Geom. Anal. 2009. Vol. 19(2). P. 358–372. DOI:10.1007/s12220-008-9055-6
- Kondratev V., Shubin M. Discreteness of spectrum for the Schr¨odinger operators on manifolds of bounded geometry // Operator theory : Advances and Applications. 1999. Vol. 110. P. 185–226. DOI: 10.1007/978-3-0348-8672-7_12
- Shen Z. The spectrum of Schr¨odinger operators with positive potentials in Riemannian manifolds // Proc. Amer. Math. Soc. 2003. Vol. 131, № 11. P. 3447–3456. DOI: 10.1090/S0002-9939-03-06968-5
- Svetlov A. V. Discreteness criterion for the spectrum of the Schr¨odinger operator on weighted quasimodel manifolds // Intern. J. Pure Appl. Math. 2013. Vol. 89, № 3. P. 393–400. DOI: 10.12732/ijpam.v89i3.10
- Losev A. G. On some Liouville theorems on noncompact Riemannian manifolds // Siberian Math. J. 1998. Vol. 39, № 1. P. 74–80. DOI: 10.1007/BF02732362.
- Losev A. G., Mazepa E. A. Bounded solutions of the Schrödinger equation on Riemannian products // St. Petersburg Math. J. 2001. Vol. 13, № 1. P. 57–73.
- Korolkov S. A., Losev A. G. Generalized harmonic functions of Riemannian manifolds with ends // Mathematische Zeitschrift. 2012. Vol. 272(1–2). P. 459–472. DOI: 10.1007/s00209-011-0943-2.
- Grigor’yan A. A. Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds // Bull. Amer. Math. Soc. 1999. Vol. 36. P. 135–249. DOI: 10.1090/S0273-0979-99-00776-4.
- Светлов А. В. Спектр оператора Шреденгера на скрещенных произведениях // Вестн. ВолГУ. Сер. 1, Математика. Физика. 2002. Вып. 7. С. 12–19.
- Рид M., Саймон Б. Методы современной математической физики : в 4 т. Т. 1. Функциональный анализ. М. : Мир, 1977. 360с.
- Schechter M. Spectra of partial differential operators. Amsterdam : North-Holland, 1971. 295 p.
- Молчанов А. М. Об условиях дискретности спектра самосопряженных дифференциальных уравнений второго порядка // Тр. Моск. матем. о-ва. 1953. № 2. С. 169–199.
- Светлов А. В. Критерий дискретности спектра оператора Шредингера на многообразиях специального вида // Современные проблемы теории функций и их приложения : материалы 17-й междунар. арат. зимн. шк. Саратов : ООО Изд-во «Научная книга», 2014. С. 245–247.
Full text:
66