Cite this article as:

Andreichenko D. K., Andreichenko K. P., Kononov V. V. On stability theory of autonomous angular stabilization system for combined dynamical systems. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 2, pp. 9-14. DOI: https://doi.org/10.18500/1816-9791-2013-13-2-2-9-14


Language: 
Russian
Heading: 

On stability theory of autonomous angular stabilization system for combined dynamical systems

Abstract: 

Studied the effect on the stability of the longitudinal acceleration discretely-continuum model of single-channel angular stabilization system with of delayed argument. Methods of construction asymptotic stability areas and analysis of impulse transition functions are developed. The critical values of the longitudinal acceleration are defined. 

References

1. Andreichenko D. K., Andreichenko K. P. On the

theory of autonomous angular stabilization systems of

missiles for salvo firing. J. of Computer and Systems

Sciences Intern., 2009, vol. 48, no. 3, pp. 465–480. DOI:

10.1134/S1064230709030137.

2. Andreichenko D. K., Andreichenko K. P. On the theory

of stabilization of satellites having elastic rods. J. of

Computer and Systems Sciences Intern., 2004, vol. 43,

no. 6, pp. 973–986.

3. Fletcher K. Chislennye metody na osnove metoda

Galjorkina [Numerical methods based on the Galerkin

method]. Moscow, Mir, 1988, 352 p.

4. Cole J. D. Perturbation methods in applied mathematics.

Blaisdell Publishing Co. Ginn and Co., Waltham,

Mass.-Toronto, Ont.-London, 1968, 260 p. (Rus. ed.:

Cole J. Metody vozmushhenij v prikladnoj matematike.

Moscow, Mir, 1972, 274 p.)

5. Andreichenko D. K., Andreichenko K. P. On the theory

of hybrid dynamical systems. J. of Computer and Systems

Sciences Intern., 2000, vol. 39, no. 3, pp. 383–398.

4

Short text (in English): 
Full text: