Cite this article as:
Andreichenko D. K., Andreichenko K. P., Kononov V. V. On stability theory of autonomous angular stabilization system for combined dynamical systems. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 2, pp. 9-14. DOI: https://doi.org/10.18500/1816-9791-2013-13-2-2-9-14
On stability theory of autonomous angular stabilization system for combined dynamical systems
Studied the effect on the stability of the longitudinal acceleration discretely-continuum model of single-channel angular stabilization system with of delayed argument. Methods of construction asymptotic stability areas and analysis of impulse transition functions are developed. The critical values of the longitudinal acceleration are defined.
1. Andreichenko D. K., Andreichenko K. P. On the
theory of autonomous angular stabilization systems of
missiles for salvo firing. J. of Computer and Systems
Sciences Intern., 2009, vol. 48, no. 3, pp. 465–480. DOI:
10.1134/S1064230709030137.
2. Andreichenko D. K., Andreichenko K. P. On the theory
of stabilization of satellites having elastic rods. J. of
Computer and Systems Sciences Intern., 2004, vol. 43,
no. 6, pp. 973–986.
3. Fletcher K. Chislennye metody na osnove metoda
Galjorkina [Numerical methods based on the Galerkin
method]. Moscow, Mir, 1988, 352 p.
4. Cole J. D. Perturbation methods in applied mathematics.
Blaisdell Publishing Co. Ginn and Co., Waltham,
Mass.-Toronto, Ont.-London, 1968, 260 p. (Rus. ed.:
Cole J. Metody vozmushhenij v prikladnoj matematike.
Moscow, Mir, 1972, 274 p.)
5. Andreichenko D. K., Andreichenko K. P. On the theory
of hybrid dynamical systems. J. of Computer and Systems
Sciences Intern., 2000, vol. 39, no. 3, pp. 383–398.
4