Cite this article as:

Molchanov V. A. Representation of universal planar automata by autonomous input signals . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 2, pp. 31-37. DOI: https://doi.org/10.18500/1816-9791-2013-13-2-2-31-37


Language: 
Russian
Heading: 

Representation of universal planar automata by autonomous input signals

Abstract: 

Universal planar automata are universally attracted objects in the category of automata, whose sets of states and output signals are endowed with structures of planes. The main result of the paper shows that any universal planar automaton is isomorphic to a many-sorted algebraic system canonically constructed from autonomous input signals of the automaton. 

References

1. Plotkin B. I., Greenglaz L. Ja., Gvaramija A. A.

Algebraic structures in automata and databases theory.

Singapore, River Edge, NJ, World Scientific, 1992. (Rus.

ed.: Plotkin B. I., Gringlaz L. Ia., Gvaramiia A. A.

Elementy algebraicheskoi teorii avtomatov. Moscow,

Vysshaia shkola, 1994, 192 p.)

2. Simovici Dan A. On the theory of reduction of semilatticial

automata. An. Sti. ale Univ. «Al. l. Cuza» Din

Iasi. (Ser. Nou˘a). Sec. 1a., 1976, vol. 22, no. 1, pp. 107–

110.

3. G´ecseg F. O proizvedeniiakh uporiadochennykh

avtomatov. I [On products of ordered automata. I]. Acta

Sci. Math., 1963, vol. 24, no. 3–4, pp. 244–250 (in

Russian).

4. G´ecseg F. O proizvedeniah uporadochennyh

avtomatov. II [On products of ordered automata. II].

Acta Sci. Math., 1964, vol. 25, no. 1–2, pp. 124–128 (in

Russian).

5. Eilenberg S. Automata, languages and machines.

Vol. B. New York, San Francisco, London, Academic

Press, 1976, 451 p.

6. Introduction to finite geometries. Amsterdam, North-

Holland Publishing Co., 1976. (Russ. ed.: Kartesi F.

Vvedenie v konechnye geometrii. Moscow, Nauka, 1980,

320 p.)

7. Ulam S. M. A Collection of Mathematical Problems.

New Mexico, Los Alamos Scientific Laboratories, 1960.

(Rus. ed.: Ulam S. Nereshennye matematicheskie

zadachi. Moscow, Nauka, 1964, 168 p.)

8. Gluskin L. M. Polugruppy i kol’tsa endomorfizmov

lineinykh prostranstv [Semigroups and rings of

endomorphisms of linear spaces]. Izv. Akad. Nauk SSSR

Ser. Mat., 1959, vol. 23, pp. 841–870 (in Russian).

9. Jonson B. Topics in Universal Algebras. Lecture Notes

in Mathematics. Berlin, Heidelberg, New York, Springer

Verlag, 1972, 220 p.

10. Konig D. Theorie der endlichen und unendlichen

Graphen. Leipzig, Acad. Verlag M.B.H., 1936, 258 p.

11. Krasner M. Endotheorie de Galois abstraita. Semin.

Dubriel, Dubriel-Jacotin, Lesieur et Pisot. Fac. sci.

Paris, 1968–1969(1970), vol. 22, no 1, pp. 6/01-6/19.

12. Molchanov V. A. A universal planar automaton is

determined by its semigroup of input symbols. Semigroup

Forum, 2011, vol. 82, pp. 1–9.

13. Molchanov V. A. Konkretnaia kharakteristika

universal’nykh planarnykh avtomatov [On concrete

characterization of universal planar automata].

Matematika. Mehanika [Mathematics. Mechanics].

Saratov, Saratov Univ. Press, 2011, iss. 13, pp. 67–69

(in Russian).

14. Molchanov V. A. On relatively elementary definability

of the class of universal planar automata in the class

of all semigroups. Algebra i matematicheskaia logika :

tez. dokl. Mezhdunar. konf., posviashch. 100-letiiu

so dnia rozhdeniia V. V. Morozova [Proc. of the

international conference dedicated to 100-th anniversary

of V. V. Morozov and youth school-conf. «Modern

Problems of Algebra & Mathematical Logic»]. Kazan,

2011, pp. 145–147 (in Russian).

15. Ershov Yu. L. Problemy razreshimosti i konstruktivnye

modeli [Problems of decidability and constructive

models]. Moscow, Nauka, 1980, 416 p. (in Russian).

Short text (in English): 
Full text: