Cite this article as:

Strukov V. E. Structure of the inverse for the integral operator of special kind . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 2, pp. 22-30. DOI: https://doi.org/10.18500/1816-9791-2013-13-2-1-22-30


Language: 
Russian
Heading: 

Structure of the inverse for the integral operator of special kind

Abstract: 

Algebra (with identity) generated by integral operators on the spaces of continuous periodic functions is considered. This algebra is proved to be an inverse-closed subalgebra in the algebra of all bounded linear operators. 

References

1. Naimark M. A. Normirovannye kol’tsa [Normed

Rings]. Moscow, Nauka Publ., 1968, 664 p. (in Russian).

2. Burbaki N. Spektral’naya teoriya [Spectral theory].

Moscow, Mir, 1972, 183 p. (in Russian).

3. Bochner S., Fillips R. S. Absolutely convergent Fourier

expansion for non-commutative normed rings. Ann. of

Math., 1942, no. 3, pp. 409–418.

4. Baskakov A. G. Wiener’s theorem and the asymptotic

estimates of the elements of inverse matrices. Functional

Analysis and Its Applications, 1990, vol. 24, no. 3,

pp. 222–224.

5. Baskakov A. G. Absteact haemonic analysis and

asymptotic estimates of elements of inverse matrices.

Math. Notes, 1992, vol. 52, iss. 2, pp. 764–771.

6. Baskakov A. G. On Spectral Properties of Some

Classes of Linear Operators. Functional Analysis and

Its Applications, 1995, vol. 29, no. 2, pp. 121–123.

7. Baskakov A. G. Asymptotic estimates for elements

of matrices of inverse operators, and harmonic analysis.

Siberian Math. J., 1997, vol. 38, iss. 1, pp. 10–22.

8. Baskakov A. G. Estimates for the entries of inverse

matrices and the spectral analysis of linear operators.

Izvestiya: Mathematics, 1997, vol. 61, no. 6, pp. 1113–

1135. DOI: 10.4213/im164.

9. Baskakov A. G. Garmonicheskii analiz lineinykh

operatorov [Harmonic analysis of linear operators].

Voronezh, Voronezh Univ. Press, 1987, 165 p. (in

Russian).

10. Kurbatov V. G. Algebras of difference and integral

operators. Functional Analysis and Its Applications,

1990, vol. 24, no. 2, pp. 156–158.

11. Strukova I. I. Wiener’s theorem for periodic at infinity

functions. Izv. Sarat. Univ. N. S. Ser. Math. Mech.

Inform., 2012, vol. 12, iss. 4, pp. 34–41 (in Russian).

6 Scientific

Short text (in English): 
Full text: