Cite this article as:
Strukov V. E. Structure of the inverse for the integral operator of special kind . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 2, pp. 22-30. DOI: https://doi.org/10.18500/1816-9791-2013-13-2-1-22-30
Structure of the inverse for the integral operator of special kind
Algebra (with identity) generated by integral operators on the spaces of continuous periodic functions is considered. This algebra is proved to be an inverse-closed subalgebra in the algebra of all bounded linear operators.
1. Naimark M. A. Normirovannye kol’tsa [Normed
Rings]. Moscow, Nauka Publ., 1968, 664 p. (in Russian).
2. Burbaki N. Spektral’naya teoriya [Spectral theory].
Moscow, Mir, 1972, 183 p. (in Russian).
3. Bochner S., Fillips R. S. Absolutely convergent Fourier
expansion for non-commutative normed rings. Ann. of
Math., 1942, no. 3, pp. 409–418.
4. Baskakov A. G. Wiener’s theorem and the asymptotic
estimates of the elements of inverse matrices. Functional
Analysis and Its Applications, 1990, vol. 24, no. 3,
pp. 222–224.
5. Baskakov A. G. Absteact haemonic analysis and
asymptotic estimates of elements of inverse matrices.
Math. Notes, 1992, vol. 52, iss. 2, pp. 764–771.
6. Baskakov A. G. On Spectral Properties of Some
Classes of Linear Operators. Functional Analysis and
Its Applications, 1995, vol. 29, no. 2, pp. 121–123.
7. Baskakov A. G. Asymptotic estimates for elements
of matrices of inverse operators, and harmonic analysis.
Siberian Math. J., 1997, vol. 38, iss. 1, pp. 10–22.
8. Baskakov A. G. Estimates for the entries of inverse
matrices and the spectral analysis of linear operators.
Izvestiya: Mathematics, 1997, vol. 61, no. 6, pp. 1113–
1135. DOI: 10.4213/im164.
9. Baskakov A. G. Garmonicheskii analiz lineinykh
operatorov [Harmonic analysis of linear operators].
Voronezh, Voronezh Univ. Press, 1987, 165 p. (in
Russian).
10. Kurbatov V. G. Algebras of difference and integral
operators. Functional Analysis and Its Applications,
1990, vol. 24, no. 2, pp. 156–158.
11. Strukova I. I. Wiener’s theorem for periodic at infinity
functions. Izv. Sarat. Univ. N. S. Ser. Math. Mech.
Inform., 2012, vol. 12, iss. 4, pp. 34–41 (in Russian).
6 Scientific