Cite this article as:
Faizullin R. T., Faizullin R. R. The restoration of functional relationships with a given singularity . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2014, vol. 14, iss. 1, pp. 103-108. DOI: https://doi.org/10.18500/1816-9791-2014-14-1-103-108
Language:
Russian
Heading:
UDC:
519.654
The restoration of functional relationships with a given singularity
Abstract:
Provided methods recovery of functional dependence with a specified discontinuity. Application of the algorithm of building function with given discontinuity is shown. The first method is based on a formal function minimization by random search. The second uses the information content of the data.
Key words:
References
1. Musatov M. V., L’vov A. A. Model Analysis of the
Least Squares Method and Methods to Obtain Estimates.
Vestnik Saratovskogo gosudarstvennogo tehnicheskogo
universiteta [Bulletin of the Saratov State Technical
University], 2009, vol. 4, no. 2c, pp. 137–140 (in Russian).
2. Kvetnoj R. N., Bojko A. R., Stepova T. A.
A Multivariate Polynomial Approximation of the
Dependencies of the Specified Array of Interval
Data on Method Least Squares. Visnik Vinnic’kogo
politehnichnogo institutu [Bulletin of Vinnica
Polytechnical Institute], 2011, no. 3, pp.103–106 (in Russian).
3. Dzhagarov Ju. A. Programmnyj modul’ dlja rascheta
approksimirujushhih polinomov po metodu naimen’shih
kvadratov [The Software Module for the Calculation
of Approximating Polynomials by the Method of Least
Squares]. Programmnye produkty i sistemy [Program
products and systems], 2005, no. 3, pp. 14 (in Russian).
4. Suhanov D. Ja., Suhanov A. Ja. The Method
of Iterative Tuning Multilayer Neural Network Based
on the Method of Least Squares. Doklady Tomskogo
gosudarstvennogo universiteta sistem upravlenija i
radiojelektroniki [Reports of Tomsk State University of
Control Systems and Radio Electronics], 2004, no. 2, pp. 111–115 (in Russian).
5. Milov V. R. Adaptive Signal Processing Based on
Recursive Algorithm with Regularization of the Least
Squares. Izvestija vysshih uchebnyh zavedenij. Priborostroenie, 2003, vol. 46, no. 10, pp. 11–17 (in Russian).
6. Tao Huasjue, Juj Shenven’, Li Pin. A New Model for
the Solution of the Equalization Method of Nonlinear
Dynamic Least Squares. Gornyj informacionnoanaliticheskij bjulleten’ (nauchno-tehnicheskij zhurnal)
[Mining informational and analytical bulletin (scientific
and technical journal)], 2001, no. 7, pp. 157–160 (in Russian).
7. Brammer K., Ziffling G. Fil’tr Kalmana–B’jusi
[Kalman-Bucy filter]. Moscow, Nauka, 1982 (in Russian).
8. Ageev A. L., Antonova T. V. Localization of
Discontinuities of the First Kind for the Functions with
Bounded Variation. Tr. IMM UrO RAN [Proc. of the IMM
of Ural department of RAS], 2012, vol. 18, no. 1, pp. 56–68 (in Russian).
9. Loginov K. V., Myznikov A. M., Fajzullin R. T.
Calculation, optimization and control modes of the large hydraulic networks. Matem. modelirovanie [Math.
modeling], 2006, vol. 18, iss. 9, pp. 92–106 (in Russian
Short text (in English):
46
Full text:
71